Occurrence, biology and harmfulness of *Galerucella lineola* (F.) (Coleoptera, Chrysomelidae) – Part 1. Last year's (parent) beetles

J. Urban

Faculty of Forestry and Wood Technology, Mendel University of Agriculture and Forestry Brno, Brno, Czech Republic

ABSTRACT: In Moravia in 1995 to 2006, the abundant occurrence of *Galerucella lineola* (F.) was used to study its occurrence, biology and harmfulness. An "alder" biological form was studied in *Alnus glutinosa* and *A. incana* mainly in Polnička Forest District (Žďár region) and a "willow" form in *Salix viminalis*, *S. triandra* and *S. caprea* in riparian and accompanying stands of the Svitava river near Bílovice nad Svitavou (Brno region). Imagoes leave their sites usually in the 1st half of May. In the course of 2.5 to 3 months, they damage on average 22.6 cm² leaves of *A. glutinosa* and *S. caprea* (of this value, males 3.2 times less than females). Males eat on average 15 times during 24 hours for a period of 3.5 minutes, i.e. in total 52 minutes (3.6% day). Females eat on average 36 times for a period of 7 min, i.e. 252 min (17.5% day). Imagoes copulate on average 10.2 times per day for a period of 67 min. For the whole period of reproduction (about 42 days), they copulate on average 428 times, i.e. for 20 days. Eggs are laid into groups of 3 to 20 (on average 14) pieces. Females lay 457 to 791 (on average 612) eggs, i.e. about 15 eggs per day. *Medina collaris* (Fall.) (Tachinidae) and *Townesilitus fulviceps* (Ruthe) (Braconidae) belong, among others, to the enemies of imagoes.

Keywords: Chrysomelidae; *Galerucella lineola*; host species; hibernation; feeding; last year's imagoes; reproduction; natural enemies

In connection with climatic/meteorological anomalies (particularly mild and dry winter and spring periods) at the end of the last and at the beginning of this century, a series of dendrophilous insect species markedly actuated. Extreme weather and primary physiological weakening of tree species resulted in a decrease in the effective fecundity and in an increase in the mortality of insects. In the CR, a striking increase in population density was noted e.g. in numerous species of Chrysomelidae. Gradations associated with heavy feeding to defoliation occurred in some traditional domestic pests (e.g. Agelastica alni [L.], Linaeidea aenea [L.], Chrysomela populi [L.], Plagiodera versicolora [Laich.], Phratora vitellinae [L.] and Lochmaea capreae [L.]), and also in species little known in this country (e.g. Chrysomela vigintipunctata [Scop.] and Gonioctena quinquepunctata [F.]). Gradations of these species of Chrysomelidae in Moravia were used to study their occurrence, biology and economic importance. New findings were also obtained on *Galerucella* (= *Pyrrhalta*) *lineola* (F.) dealt with in this paper consisting of two parts. In Part 1, mainly host species are described including the feeding and reproduction of imagoes after hibernation. Part 2 deals particularly with the development of larvae, pupae and this year's imagoes, generation conditions of the chrysomelid and harmfulness.

G. lineola is the most important species of the genus that is represented by 7 species in the CR fauna. It is a widely distributed Palaearctic species with the centre of occurrence in the temperate boreal zone of Eurasia (Kožančikov 1958). The southern boundary of the species natural range is in Algeria, Turkey and Asia Minor, the northern boundary reaches the polar circle (Arnoldi et al. 1955; Turanli et al.

Supported by the Ministry of Education, Youth and Sports of the Czech Republic, Project No. MSM 6215648902.

2003). The area colonized by the species includes a wide zone from Portugal, Spain, Great Britain and Northern Ireland through western, central and eastern Europe including the European part of the former Soviet Union. In Scandinavia, it occurs in the best part of the area with the exception of the northernmost part of the country (Hellén et al. 1939). A number of authors who studied the chrysomelids most frequently mentioned this species (e.g. Klapálek 1903; Schaufuss 1916; Escherich 1923; ROUBAL 1937-1941). It occurs also in the Crimea, Caucasus, northern Kazakhstan, Kyrgyzstan, Siberia, the Primorsk Territory in Far East (ARNOLDI et al. 1955), and in China (Wen, Huang 1995). WARCHALOWSKI (1973) concisely summarized the chrysomelid distribution. According to the author, G. lineola is a Palaearctic species inhabiting almost the whole Europe, northern Africa, Siberia, China, Mongolia and Japan.

As for the altitude, *G. lineola* is distributed from lowlands up to foothills. It is a considerably hygrophilous species requiring high air humidity and soil moisture. Therefore, we can find it along the banks of watercourses, ponds, reservoirs and lakes. For example, in the Ukraine, it is most abundant on a periodically flooded area along the Dnieper River or at artificially irrigated places (Lopatin 1960). In northern parts of its range, it colonizes trees in open and well-insolated (often heavily waterlogged) localities (Kožančikov 1958).

Until the beginning of the last century, willows (Salix spp.) were considered to be nearly exclusively host plants of G. lineola (CALWER 1876; HENSCHEL 1876; ECKSTEIN 1897; REITTER 1912, etc.). Only later, it was also reported on alder (Alnus spp.) or other species. The chrysomelid was named according to the abundant occurrence on Salix spp., e.g. in German (Behaarter Weidenblattkäfer, Gelber Weidenblattkäfer), English (brown willow beetle), Russian (zholtyj ivovyj listoed), French (galéruque de l'oisier), Spanish (galeruca de la mimbrera) and Polish (szarynka wiklinówka). Кинит (1913) reported the species occurrence on willow, alder and hazel. The same host species (particularly S. viminalis L.) was mentioned by SCHAUFUSS (1916). For example, Hansen and Henriksen (1927) and Medvedev and Sapiro (1965) reported the general occurrence of the species on willows and alders. Nüsslin and Rhumbler (1922) specified the spectrum of the host plants of G. lineola. According to these authors, the pest attacks mainly S. triandra L., S. viminalis L. and S. caprea L. In addition to these species it damages S. purpurea L., poplar, alder and hazel to a smaller extent (ESCHERICH 1923). According to ŽIVOJINOVIČ (1948) it attacks willows (mainly S. viminalis and S. caprea), alders and hazels. Pernersdorfer (1941) found the species on S. alba L. and S. triandra in Austria. In the territory of the former Czechoslovakia, the species attacked mainly S. caprea (Fleischer 1927–1930). Roubal (1937-1941) reported it both on willow and alder, and near Bratislava even on Robinia pseudoacacia L. According to Ogloblin (1936) it lived most often on S. alba L. f. vitellina and S. viminalis. The author also mentioned the existence of dubious data on the potential of the species to consume leaves of Lysimachia vulgaris L. and Rumex sp. Information on the occasional damage to fruit trees (Sorauer et al. 1932), leaves of Fragaria spp. and flowers of Rosa spp. (Matesova et al. 1962) is, however, quite credible. The spectrum of host plants was summarized by Mohr (1966) and according to him Salix spp., Corylus avellana L., Alnus glutinosa (L.) Gaertn., A. incana (L.) Moench and Populus nigra L. belong to host plants. As for willows the chrysomelid attacks S. lapponum L., S. aurita L., S. viminalis, S. fragilis L., S. daphnoides Vill., S. pentandra L. and S. caprea (Brovdij 1973). In addition to the leaves of willows, alders and hazels, beetles and larvae of the pest can reputedly consume also the leaves of Padus avium Mill. and Rubus sp.

The adaptation of *G. lineola* to living conditions and particularly its food specialization to quite a narrow spectrum of main host tree species resulted in the gradual differentiation of the species into two biological forms (Kožančikov 1958; Brovdij 1968, 1973). According to Kožančikov (1958) the willow biological form lives in Karelia mainly on 1 to 2 m shrubs of S. nigricans Sm. (= S. myrsinifolia Sal.) and sporadically on S. lapponum and S. aurita. It occurs most abundantly at the edge of large lakes and along streams and rivers, viz usually on waterlogged and periodically flooded lands. It was not found on other arborescent willows (S. fragilis, S. daphnoides, S. pentandra, S. triandra and S. caprea). In artificial rearing, however, the chrysomelid willingly consumed the leaves of *S. caprea*. The willow biological form lives exclusively on willows under conditions of the Karelian Isthmus.

On the coast of the Finnish Gulf and banks of adjacent lakes, the alder biological form of *G. lineola* occurs on shrubby and arborescent *Alnus glutinosa* (height even over 10 m). On *A. incana* (as well as on poplars), however, the chrysomelid was not found. Late leaf unfolding can mainly cause its absence on poplars. For example, *P. tremula* L. flushes there 3 to 4 weeks later than willows, i.e. at the time when beetles already reproduce. After wintering (usu-

ally in the 2nd decade of May), imagoes of the alder biological form together with imagoes of the willow form occur on flushed willows where they carry out intensive feeding. After completing the first stage of maturation feeding on willows, however, imagoes of the alder form fly over to alders at the end of May and at the beginning of June. Thus, further development of the chrysomelid occurs there. Alders (*Alnus* spp.) are phenologically similar to poplars. They unfold leaves rather late, but accrue until the late summer creating leaves suitable for consumption even at the close of the growing season.

Kožančikov (1958) assumed that the original biological form of *G. lineola* was the alder form which occurred in the western part of the species natural range. The continental willow form, which is broadly distributed in Eurasia, is a derived form (according to Ikonen et al. 2003 an original form). The adults and larvae of both forms do not differ morphologically from each other. They differentiate mainly by feeding relations to host species and considerable ecological (and evidently also reproduction) isolation. Under certain circumstances, however, adults of both races can mate with each other and produce fertile progeny. According to Ikonen et al. (2003), it is probable that there is no marked host relationship of the chrysomelid only to alders or willows.

Occurrence and dynamics of the abundance of *G. lineola* and other phytophagous insect species on *A. glutinosa* and *A. incana* were studied by Gharadjedahi (1997) in the vicinity of Bayreuth (northern Bavaria). At one of the three localities under investigation, the chrysomelid caused defoliation on *A. glutinosa*. According to the author it was quite a sporadic case of such a heavy outbreak of the chrysomelid on alder trees inland. Heavy gradations of the chrysomelid are known on alder *A. subcordata* Mey. in Iran (Sadeghi et al. 2004).

References in literature to the harmful occurrence of *G. lineola* in osier plantations are numerous. In the last decades, the chrysomelid was also studied many times in bioenergy plantations of willows which were established mainly in western and northern Europe. At this specific method of willow growing large amounts of young plant material accumulate in stands, the material being attractive for numerous insects and other pests. In osier plantations and energy plantations of willows, numerous species of Chrysomelidae find a suitable environment for their development. According to Escherich (1923) G. li*neola* causes the greatest damage to osier plantations, often even greater than "blue" chrysomelids Plagiodera versicolora (Laich.) and Phratora spp. (= Phyllodecta spp.). Wagner and Ortmann (1959) ranked the chrysomelid among the main pests of S. caprea, S. triandra, S. viminalis and sometimes also S. purpurea plantations in Germany. In the Netherlands (Tuinzing 1946), former Yugoslavia (Kovačevič 1957), Great Britain (Hunter 1992; Sage, Tucker 1997; SAGE et al. 1999), Sweden (HÖGLUND et al. 1999), Czech Republic (URBAN 1981) and elsewhere the species ranks among common pests. In Salix cv. Americana plantations in Poland, G. lineola was found quite rarely (KADŁUBOWSKI, CZALEJ 1962; CZERNIAKOWSKI 2002). However, e.g. in Spain, S. cv. Americana and Populus spp. are considered to be its main host species (VICENTE et al. 1998). The chrysomelid was named according to the willow also in Spanish. Similar differences in opinions on the trophic affinity of the chrysomelid to various host species occur in literature quite frequently.

In Sweden, Wirén and Larsson (1984) studied the preference of the species for various willow clones during egg laying. The authors suppose that females select leaves which are suitable for the development of larvae because the larvae show limited possibilities to change host plants. Larsson et al. (1986) studied the effects of light and nutrition on the concentration of phenolic substances in leaves of S. × dasyclados Wimm. (= S. cinerea × S. viminalis) and suitability of leaves for the nutrition of G. lineola imagoes. In their rearing, imagoes consumed five times more leaves of plants grown under low illumination, which were optimally supplied with plant nutrients. In these leaves, the concentration of phenolic substances was significantly 2/3 lower compared to the leaves of plants intensively illuminated and optimally or suboptimally supplied with nutrients. According to RAUPP and SADOF (1991) phenolic glucosides significantly affect the quality of food (similarly like tannins, water and nitrogen content and the stiffness of leaves).

An antiherbivorous function is usually attributed to phenolglucosides. Their composition and concentration in leaves of various willow species differ very often. According to Tahvanainen et al. (1985) phenolglucosides show both stimulation and inhibition effects which are dependent on the degree of adaptation of the particular species of chrysomelids. The authors found that S. nigricans contains an extremely high concentration of phenolic glucosides (mainly salicortin and salicin) in leaves (whereas S. cv. Aquatica and S. × dasyclados has a medium concentration). The total low concentration of a large number of glucosides was found in leaves of S. bicolor Willd. (= S. phylicifolia L.), S. caprea and S. viminalis. Leaves of S. pentandra and S. triandra contain the minimal concentration of common glucosides, but

rather high concentrations of little known glucosides (e.g. salidrosid in *S. triandra*). *G. lineola* is evidently considerably adapted to the use of salidrosid. Similarly like *Lochmaea capreae* (L.), however, it consumes most willingly leaves of willows with the total low content of phenolic glucosides. The high concentration of phenolglucosides in leaves of *S. nigricans* and *S. pentandra* (and low in *S. bicolor*) was found in Switzerland by RANK et al. (1998).

Denno et al. (1990) studied egg laying including the development of larvae on two species of willows rich in salicyl alcohol (*S. fragilis* and *S. × dasyclados*) and one willow species poor in salicyl alcohol (*S. viminalis*). In their experiments, females preferred oviposition on *S. viminalis* and *S. fragilis* and they did not lay any eggs on *S. × dasyclados* et al. The larvae also developed much better on *S. viminalis* and *S. fragilis* than on *S. × dasyclados* (see Part 2). Behaviour and development of the chrysomelid were undoubtedly affected by the total concentration of simple phenolic compounds, which was lowest in leaves of *S. fragilis*, higher in leaves of *S. viminalis* and highest in leaves of *S. × dasyclados*.

SELDAL et al. (1994) studied the effects of an experimental leaf injury of *A. incana* on egg laying and on the development of larvae of *G. lineola*. The authors demonstrated that through the injury proteinase inhibitors were induced showing important impacts on the chrysomelid. Peacock et al. (2001) studied volatile substances from leaves of 10 willow species and their effect on *G. lineola*, *Phratora vulgatissima* (L.) and *P. vitellinae* (L.). The number and concentration of volatile substances after damage to leaves increased in all species of willows. The authors demonstrated a negative correlation between the amount of cis-3-hexenylacetate and resistance of willows to *G. lineola* and *P. vulgatissima*.

KOLEHMAINEN et al. (1995) tested the effects of phenolic glucosides on the selection of host plants of G. lineola. According to Tahvanainen et al. (1985) the chrysomelid is particularly attracted by the main glycoside, i.e. salidrosid. The pest develops slowly on food-suboptimum hosts (e.g. S. × dasyclados), which increases its mortality (Häggström, Larsson 1995). Hallgren (2002) investigated the inheritance of secondary metabolites in hybrids between S. repens L. and S. caprea and the impacts of hybridization on herbivores including G. lineola. KENDALL et al. (1996) studied the degree of damage to 24 clones of willows (12 domestic, 6 from Canada and 6 from Sweden) by G. lineola and Phratora vulgatissima in England. Beetles damaged mostly S. viminalis, S. aurita, S. caprea and S. cinerea. They preferred

S. eriocephala Michx. to the lowest extent, followed by *S. purpurea*, *S. burjatica* Nas. and *S.* × *dasyclados*. Surprisingly, *S. triandra* was also attacked very little. The results of the authors indicate that both species of chrysomelids are repelled from feeding by high concentrations of phenolglucosides in leaves.

The effects of the shading of *S. bicolor* on damage caused by *G. lineola* were studied by SIPURA and TAHVANAINEN (2000). According to their observations adults preferred to damage willows in the open area. However, they did not found any differences in the development of larvae in the open area and at shady places.

In Finland, the chrysomelid heavily attacks *S. bi-color* at moist sites. It does not look for these sites due to the higher quality of food or the lower pressure of predators, but because beetles as well as larvae (particularly larvae of the 1st instar) are considerably hygrophilous there (SIPURA et al. 2002).

MATERIAL AND METHODS

The paper refers to the study of the occurrence, bionomics and harmfulness of Chrysomelidae (including G. lineola) which was carried out in six osier plantations in northern, central and southern Moravia in 1969 to 1976 (URBAN 1981). In the period 1995 to 1998, the alder biological form of G. lineola was studied, viz in 3 to 20-years-old A. glutinosa and A. incana in Polnička Forest District (Forest Enterprise of Dr. R. Kinský, Žďár nad Sázavou). The locality occurs at an altitude of about 650 m above sea level. Mean annual temperature is 5.8°C, mean annual precipitation 740 mm and the growing season about 135 days. Field inspections were carried out in the course of the growing season usually in 1 to 2-week intervals. The relative numerical proportion of the pest was determined by the method of sweeping (always 100 one-sided sweepings).

Simultaneously with field studies, the alder biological form of *G. lineola* was studied in individual and mass rearing on leaves of alder or other species. Leaves of a certain age (or foliaged terminal sections of shoots) were taken from the same tree and from the same part of the crown. Petioles or lower ends of shoots were wrapped by slightly moistened cotton wool or inserted into small vessels with water. The throat of the vessels was then sealed by cotton wool. For rearing, glass plates 10 (or 20) cm in diameter and height 5 (or 10) cm were used. In regular 2 to 3-day intervals, fresh food was served to the chrysomelids. In 2 to 3-day intervals, damaged leaf area was measured using a planimeter. The number and localization of laid eggs were registered. Dimensions

of eggs were measured occasionally during the embryonal development of the pest. In dead imagoes, the body length was measured and the number of unlaid eggs was determined by microscopic dissection. In selected rearings of males and females, the number of frass pellets was recorded and their dimensions were measured micrometrically.

Using the same methods, the willow biological form of *G. lineola* was studied in 1999 to 2006. This form occurred abundantly on *S. triandra* and *S. viminalis* in riparian and accompanying stands of the Svitava River in the stretch between Bílovice nad Svitavou and Adamov (former Brno-venkov District). The locality is situated at an altitude of about 235 m. Mean annual temperature is 8.4°C, mean annual precipitation 547 mm and the growing season about 168 days. For laboratory rearings of the chrysomelid, leaves of *S. caprea* and *S. fragilis* were used most often.

Parasitism was determined in beetles caught in nature. Hatched parasitoids of the family of Tachinidae were determined by Prof. J. Vaňhara (Brno) and of the family of Braconidae by Assoc. Prof. M. Čapek (Brno). Herewith, I highly appreciate the help of both specialists. Attention was also paid to the development and harmfulness of larvae of particular instars as well as to the development and harmfulness of young (this year's) beetles (see Part 2).

RESULTS AND DISCUSSION

Host species

In the area of the Žďárské vrchy Hills, beetles of the alder biological form were found mainly on *A. glutinosa*, sparsely on *A. incana*. Sporadically, they were found in sweepings on *Picea abies* (L.) Karst. and *Betula* sp. They were often noted (and caught by simple collection or by means of sweep nets) on *A. glutinosa* in the Brno region or elsewhere. In the laboratory, beetles consumed willingly leaves of *A. glutinosa*. Larvae developed optimally also on the alder (see Part 2). The chrysomelid is less trophically adapted to *A. incana*. In laboratory rearings, it is able to consume leaves of some species of willows (e.g. *S. fragilis*). In the case of famine, the beetles consumed reluctantly leaves of *S. alba* and *Betula* sp.

G. lineola is one of the most abundant species of chrysomelids in osier plantations in Moravia. It damages *S. viminalis* to the largest extent. The chrysomelid often attacks plantations of *S.* \times *smithiana* Willd. (= *S. caprea* \times *S. viminalis*), *S.* \times *mollissima* Ehrh. (syn. *S.* \times *hippophaeifolia* Thuill.) (= *S. triandra* \times *S. viminalis*), *S.* \times *rubra* Huds. (= *S. purpurea*

 \times *S. viminalis*) and *S. caprea* admixed in plantations (Urban 1981). S. \times *basfordiana* Schl. (= *S. alba* L. f. *vitellina* \times *S. fragilis*), *S. purpurea* and surprisingly also *S. triandra* and interspersed *S. fragilis* belong to little sought-after or even neglected species.

In the open nature, it occurs commonly on shrubs of *S. triandra* and *S. viminalis* growing along watercourses on soils rich in minerals affected by the fluctuating groundwater table. In a flooded riparian zone along the Svitava River in the region of Brno, the chrysomelid was about 4 times more abundant on *S. triandra* than on *S. viminalis*. It was often found on young *S. fragilis* and *S. × rubens* Schr. (= *S. alba* × *S. fragilis*) and sporadically on *S. alba* growing along the Svitava River in a stretch between the Brno district Obřany and Bílovice nad Svitavou.

In extensive laboratory tests, the imagoes of the willow biological form of *G. lineola* usually damaged most *S. viminalis*, somewhat less *S. caprea* and *S. triandra* and least *S. fragilis* (damaged leaf area ratio 3:2.5:2.5:1).

Provided that the imagoes had a possibility of selecting one of the host plants mentioned above, they consumed substantially less or quite refused *S. alba, S. alba f. vitellina pendula* Rehd. and *S. × erythroflexuosa* Rag. Starving imagoes of the willow form did not damage the leaves of *A. glutinosa, A. incana* and *Populus nigra* and they died within several days. Larvae developed normally in the laboratory not only on *S. viminalis, S. caprea* and *S. triandra,* but also on *S. fragilis* (see Part 2).

The results of field observations and laboratory investigations corroborate the idea of Denno et al. (1990) that the willow form of *G. lineola* can successfully develop on quite a wide spectrum of willows. With respect to the existence of the willow and alder biological form it is necessary to consider the chrysomelid to be a polyphagous species.

Hibernation and leaving winter habitats

According to Nüsslin and Rhumbler (1922), Escherich (1923), Arnoldi et al. (1955), Gäbler (1955), Koehler and Schnaider (1972), Broydij (1973), Gharadjedaghi (1997) and Vicente et al. (1998) the imagoes of *G. lineola* winter in leaf litter. Kožančikov (1958) localized hibernation shelters. According to him imagoes winter not only in litter but also in fissures of bark and rotten trees, sometimes even en masse in several layers. Häggström and Larsson (1995) and Kendall et al. (1996) reported wintering in fissures of bark and litter (or in other hidden places). Sage et al. (1999) found imagoes in aggregations (as many as 20 individuals)

Fig. 1. A female of the alder biological form of Galerucella lineola

under released bark of older trees of S. fragilis, S. alba and Sambucus nigra L., rarely under bark of dead branches and stems. Imagoes very often wintered in dead hollow stalks of plants of the family Umbelliferae and Epilobium sp. Hibernation shelters occur mostly in the vicinity of host trees (Gharadjedaghi 1997) and in the surroundings at a distance up to 20 m (SAGE et al. 1999). In osier plantations in Moravia, imagoes mostly winter in litter, less frequently in fissures of pollard willows and elsewhere. For example, in an osier plantation with S. viminalis in Skalička near Hranice in Moravia (former Přerov District), on average 0.5 imagoes per 1 m2 occurred in spring 1974. After defoliation on S. viminalis in Prosenice (former Přerov District), up to 35 imagoes per 1 m² occurred in autumn 1975 (URBAN 1981).

According to literature, imagoes leave their hibernation shelters already in April (Schaufuss 1916; Escherich 1923; Živojinovič 1948; Gäbler 1955; Mohr 1966; Vicente et al. 1998) or at the end of April and at the beginning of May (Häggström,

LARSSON 1995; LARSSON et al. 1997). In Great Britain, imagoes colonize host plants for a period of about 2 weeks, viz from the end of March to mid-April (SAGE et al. 1999) or in April and May (KENDALL et al. 1996). GHARADJEDAGHI (1997) found the first imagoes on about 12 May in Bavaria. In boreal Karelia, imagoes occur on trees as late as in mid-May when mean daily temperatures exceed 10°C (Kožančikov 1958). In Iran, on the other hand, imagoes activate already at the end of March (SADEGHI et al. 2004). In the warmest areas of Moravia, beetles leave their winter habitats usually at the end of April, in the area of central and northern Moravia usually at the beginning of May or during the first half of May. The beginning and course of leaving the winter habitats are affected by climate and weather. Under favourable conditions most beetles leave winter habitats during a week. In the population of the last year's beetles, males and females occur at the ratio of 1:1 to 1:1.2. According to Kožančikov (1958) beetles hibernate for a period of 6 to 7 months. According to our observations, beetles of the alder biological form hibernate in the region of Žďár on average 7 months (from mid-October to mid-May). Beetles of the willow form hibernate in the Brno region on average 8.5 months (from mid-August to the beginning of May).

Beetles of the alder biological form (Fig. 1) are on average larger than beetles of the willow form. Nevertheless, males of both forms are on average smaller than females (Figs. 2 and 3). Beetles of the alder biological form are 4.6 to 6.8 (on average 5.7) mm long. Males are on average 5.4 and females 5.9 mm long. Beetles of the willow biological form are 4.4 to 5.6 (on average 5.0) mm long. Males are on average 4.8 and females 5.1 mm long. Medvedev and Šapiro (1965), Mohr (1966) and Maisner (1974) reported

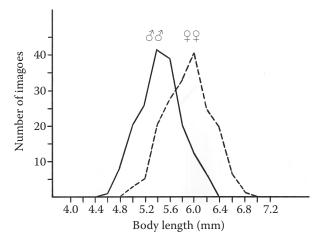


Fig. 2. The body length of males and females of the alder biological form of *G. lineola*

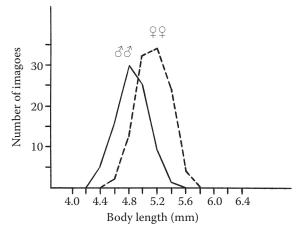


Fig. 3. The body length of males and females of the willow biological form of *G. lineola*

Fig. 4. An imago of *G. lineola* at perforating leaves of *A. glutinosa*. Polnička, 15 May 1998

Fig. 5. Damage to a young leaf of *A. glutinosa* by imagoes of *G. lineola*. Polnička, 15 May 1998

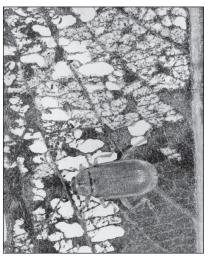


Fig. 6. An imago of the willow biological form of *G. lineola* at skeletonizing the older leaf of *S. fragilis*. Laboratory rearing, 18 June 1998

a similar length of the body of beetles (4.5 to 6 mm). REITTER (1912) and ESCHERICH (1923) mentioned a considerably different (5 to 6 mm) length of the body. CALWER (1876) and HENSCHEL (1895) reported a wrong length of the beetles.

Feeding of imagoes

In spring, starved and weakened imagoes fly onto young (scarcely also older) budding and newly budded host trees growing in moist, open and insolated sites and start early to ingest. From the adaxial face of the leaf, they begin to bite out irregular holes in leaf blades. The holes sometimes reach the leaf margins and partly damage lateral veins (Figs. 4 and 5).

Beetles usually skeletonize somewhat older leaves without damaging the venation and opposite epidermis (Fig. 6). Feeding marks on alders are on average significantly larger (about 2.7 mm) than on willows. Feeding marks on young leaves of willows are on average larger (about 1.8 mm) than feeding marks on older leaves of willows (about 1.1 mm). In laboratory rearings, imagoes damaged leaves of smoothed-leaved willows *S. triandra* and *S. fragilis* mainly from the adaxial face. On the other hand, the leaves of *S. caprea*, which are densely pubescent on the abaxial face, were damaged by imagoes exclusively from the adaxial face. In the lack of suitable food (e.g. at the non-coincidence of the time of budding and the time of beetle invasion or due to heavy

Table 1. Abundance of *G. lineola* imagoes at sweeping on *A. glutinosa* and *A. incana* (Polnička, 1996). The mean leaf area of *A. glutinosa* damaged by imagoes and the mean number of laid eggs in the laboratory. An asterisk* indicates 28.6% parasitization of imagoes by tachinas *Medina collaris* (Fall.). In rearings free of tachinas, the total mean life span is given of male and female imagoes in captivity. Field and laboratory examinations, 1996

Date of trapping	Number of imagoes	Number of ♂♂/♀♀	Average damaged area (cm²)	Average number of laid eggs	Generation of imagoes	Average life of ♂♂♀♀ (days)
12 May	11	6/5	19.8	112.6	last year's	26/25
25 May	14	5/9	17.9	115.0	last year's	27/24
8 June	6	-/6	27.3	160.0	last year's	-/35
25 June	11	4/7	17.0	170.9	last year's	83/26
14 July	25	15/10	11.1	62.5	last year's	52/32
Total	67	30/37	_	_	_	(47/28)
2 August	14	5/9	0.9	0	this year's*	17/12
23 August	3	1/2	4.6	0	this year's	155/144
13 September	8	5/3	5.3	0	this year's	177/142
10 October	4	1/3	5.8	0	this year's	139/125
Total	29	12/17	_	_	-	(168/136)

Table 2. Abundance of *G. lineola* imagoes at sweeping on *A. glutinosa* and *A. incana* (Polnička, 1997). The mean leaf area of *A. glutinosa* damaged by imagoes including the mean number of laid eggs in the laboratory. An asterisk* indicates the occurrence of *Beauveria bassiana*. In rearings free of infection, the total mean life span is given of male and female imagoes in captivity. Field and laboratory examinations, 1997

Date of trapping	Number of imagoes	Number of ♂♂/♀♀	Mean damaged area (cm²)	Mean number of laid eggs	Generation of imagoes	Mean life of ♂♂/♀♀ (days)
17 May	2	1/1	17.0	155.0	last year's	30/26
1 June	3	3/-	3.8	_	last year's*	17/-
13 June	9	1/8	11.2	98.9	last year's*	36/19
27 June	11	5/6	16.5	165.7	last year's	58/47
13 July	6	3/3	6.2	40.2	last year's	50/40
25 July	0	0	_	_	_	_
Total	31	13/18	_	_	_	(52/43)
7 August	1	1/-	0	0	this year's*	29/-
21 August	3	3/-	2.0	_	this year's*	42/-
27 August	6	3/3	4.8	0	this year's*	42/41
8 October	2	-/2	1.0	0	this year's	-/136
22 October	0	0	_	_	_	_
Total	12	7/5	_	_	_	(?/136)

defoliation) beetles are able to browse buds or fine bark of shoots.

In the climatically colder area of Žďár, the last year's imagoes usually occurred on alders from 10 May to 5 August, i.e. for the period of nearly 3 months (Tables 1 and 2, Fig. 7). In the warmer area of Brno, the last year's imagoes usually occurred on willows from 5 May to 20 July (i.e. 2.5 months) (Table 3, Fig. 7). In the laboratory, imagoes of both forms usually lived only 1 to 2 months. Last year's imagoes of the alder

biological form lived in total about 292 days, imagoes of the willow form about 310 days.

Beetles of the alder biological form damaged trees usually from 20 May to the beginning of July and beetles of the willow form mainly in the 2nd half of May and in the 1st half of June. Laboratory-reared beetles of the alder form which hibernated in a refrigerator at 5°C damaged on average 18.7 cm² leaves of *A. glutinosa* in spring and after wintering they lived only 15 to 25 days (Table 4). Males of the wil-

Table 3. Abundance of *G. lineola* imagoes at sweeping on *S. triandra* and *S. viminalis* (Bílovice nad Svitavou, 2006). The mean leaf area of *S. caprea* or *S. fragilis* (from 1 January 2007 *S. alba* f. *vitellina pendula* Rehd. and *S. × erythroflexuosa* Rag.) damaged by imagoes and the mean number of laid eggs. An asterisk* indicates about 50% parasitization of imagoes by *Medina collaris* (Fall.). In imagoes with intact development, the mean life span in captivity is given. Laboratory examination 2006 (2007)

Date	Number of imagoes	Number of ♂♂/♀♀	Laboratory rearings of ∂∂/♀♀	Host plants	Mean damaged area (cm²)	Mean number of laid eggs	Generation of imagoes	Mean life span of ♂♂/♀♀ (days)
12 May	20	10/10	10/10	S. caprea	22.7	600	last year's	47/44
30 May	24	11/13	11/13	S. caprea	16.0	443	last year's	30/28
24 June	7	3/4	3/4	S. caprea	11.4	199	last year's	19/22
Total	51	24/27	24/27	_	_	_	_	(36/33)
13 July	10	7/3	2/2	S. fragilis	39.1	270	this year's*	171/101
20 July	20	13/7	1/1	S. caprea	25.0	670	this year's*	29/93
20 Il	01	10/11	3/2	S. caprea	26.0	173	this year's*	130/145
29 July	21	10/11	2/2	S. fragilis	19.1	26	this year's*	97/146
5 August	12	6/6	3/3	S. caprea	17.0	92	this year's*	125/150
16 August	2	0/2	0/1	S. caprea	10.3	32	this year's*	0/168
Total	65	36/29	11/11	_	-	_	_	(121/136)

Table 4. The weekly area of *A. glutinosa* leaves damaged by the last year's imagoes of the alder biological form of *G. lineola* and the weekly number of laid eggs. Imagoes completed their maturation feeding on 22 November 1995 and wintered in a refrigerator (5°C). Laboratory rearing, 1996

W/1-	Period	Damag	ed area	Laid	Laid eggs	
Week	(from-to)	(cm ²)	(%)	number	(%)	
1 st	6–12 May	30	22.9	84	15.1	
$2^{ m nd}$	13–19 May	67	51.2	264	47.5	
3^{rd}	20-26 May	24	18.3	108	19.4	
$4^{ m th}$	27–2 June	5	3.8	59	10.6	
5 th	3–9 June	3	2.3	28	5.1	
6 th	10–16 June	2	1.5	13	2.3	
7^{th}	17–19 June	0	0	0	0	
Total		131	100.0	556	100.0	
Number of 33/25)		2	2/5		
Mean area (cm ²)		18	3.7	11	1.2	
Mean life span of	\$∂/♀♀ (days)		15	5/25		

low form which were caught in nature in spring 2006 at the beginning of colonization damaged on average 11.1 cm² leaves of *S. caprea*, females on average 36.0 cm² and pairs of males and females on average

20.9 cm² (Table 5). Males lived on average 48 days and females 44 days.

For the whole period of spring feeding, males produced on average 3,865 and females on average

Table 5. The mean weekly leaf area of *S. caprea* damaged by imagoes of *G. lineola* after wintering. The mean weekly number of defecated frass pellets and laid eggs. Dimensions of frass pellets and their volume. Male and female imagoes were reared individually and in pairs. Laboratory examination, 2006

	D : 1		ales viduals)		Females (8 individuals)			Males + females (4 pairs 1:1)		
Week	Period (from–to)	mean damaged area (cm²)	mean number of frass pellets	mean damaged area (cm²)	mean number of frass pellets	mean number of eggs	mean damaged area (cm²)	mean number of frass pellets	mean number of eggs	
1 st	12–18 May	3.3	1,044	8.4	1,328	122	5.1	869	150	
$2^{\rm nd}$	19-25 May	2.3	767	9.8	1,473	125	5.0	813	177	
3^{rd}	26-1 June	1.6	547	6.5	1,046	120	3.7	650	119	
4^{th}	2–8 June	1.3	479	4.8	814	91	3.4	570	111	
5^{th}	9–15 June	1.0	470	3.5	625	80	1.8	382	56	
6 th	16-22 June	0.7	238	1.8	358	25	0.9	315	23	
7^{th}	23-29 June	0.5	215	1.0	299	13	0.9	252	12	
8 th	30-6 July	0.3	95	0.2	39	_	0.1	26	_	
9 th	7–10 July	0.1	10	_	_	_	_	_	_	
Mean		11.1	3,865	36.0	5,982	576	20.9	3,877	648	
from-to		6.2-13.3	2,025-4,674	26.3-45.2	4,092-8,055	457-661	18.7-23.0	3,173-4,462	532-791	
	ngth/width of ellet (mm)	0.725	5/0.096		0.9496/0.1214			?		
Mean vol frass pell		0.0	0052		0.011			?		
Volume (mm³)	of frass pellets	20	0.1	65.7		?				
Volume o	of frass m² (mm³)	1	8	1.8		?				
Mean life (days)	e span		18		44			46/44		

Table 6. The weekly leaf area of *A. glutinosa* (cm²) damaged by imagoes of the alder biological form of *G. lineola* from Polnička (in numerator). An asterisk* indicates the weekly area of *S. fragilis* leaves damaged by imagoes of the willow biological form of *G. lineola* from Bílovice nad Svitavou. Weekly number of laid eggs (in denominator). Laboratory examination, 1998

		Date of tr	apping/generation of	f imagoes	
Week	10 May/ last year's	11 May*/ last year's*	24 May/ last year's	20 June/ last year's	11 September/ this year's
1 st	25/131	4/48	16/157	11/118	2/0
2^{nd}	30/132	11/42	28/178	22/170	2/0
$3^{ m rd}$	26/107	8/38	21/204	15/87	0
$4^{ m th}$	20/79	7/5	15/149	16/74	0
$5^{ m th}$	13/49	3/0	12/107	3/14	1/0
6 th	0	1/0	5/24	0	1/0
7^{th}	_	0	1/49	_	0
8^{th}	_	_	0	_	0
9^{th} <	_	_	_	_	0
Total	114/498	37/133	98/868	67/463	6/0
Number of ♂♂/♀♀	4/2	2/1	-/3	-/2	-/1
Mean	19/249	12/133	33/289	34/232	6/0
Mean life span of ♂♂/♀♀ (days)	30/38	44/25	-/43	-/36	-/213

Table 7. The weekly area of *A. glutinosa* leaves (cm²) damaged by imagoes of the alder biological form of *G. lineola* from Polnička (in numerator). Weekly number of laid eggs (in denominator). Laboratory examination, 1996

			Date of trap	ping/generation	of imagoes		
Week	12 May/ last year's	25 May/ last year's	8 June/ last year's	25 June/ last year's	14 July/ last year's	23 August/ this year's	13 Sept./ this year's
1 st	76/142	92/447	71/414	54/439	74/78	3/0	41/0
2^{nd}	68/287	96/322	45/254	37/443	61/248	3/0	1/0
3^{rd}	38/110	40/192	25/176	41/266	48/160	2/0	0
$4^{ m th}$	16/0	12/69	15/68	19/48	37/61	2/0	0
$5^{ m th}$	11/0	5/5	7/48	7/0	25/52	1/0	0
6 th	3/24	5/0	1/0	1/0	16/26	2/0	0
7^{th}	2/0	1/0	_	0	9/0	1/0	0
8 th	2/0	0	_	2/0	0	0	1/0
9 th	1/0	_	_	2/0	1/0	0	0
10^{th}	1/0	_	_	1/0	1/0	0	0
$11^{ m th}$	_	_	_	2/0	2/0	0	0
12^{th}	_	_	_	_	3/0	0	0
13^{th} <	_	_	_	_	0	0	0
Гotal	218/563	251/1,035	164/960	187/1,196	277/625	14/0	43/0
Number of 3∂/♀♀	6/5	5/9	-/6	4/7	15/10	1/2	5/3
Mean damaged area (cm²)	19.8	17.9	27.3	17.0	11.1	4.6	5.4
Mean number of eggs	112.6	115.0	160.0	170.9	62.5	0	0
Mean life of ♂♂/♀♀ (days)	26/25	27/24	-/35	83/26	52/32	155/144	177/142

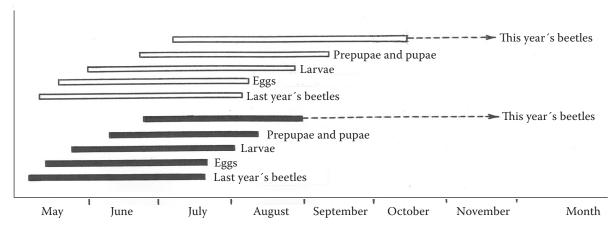


Fig. 7. The diagram of occurrence and development of the alder biological form of *G. lineola* on leaves of *A. glutinosa* and *A. incana*. Polnička, 1995 (light). The diagram of occurrence and development of the willow biological form of *G. lineola* on leaves of *S. viminalis*, *S. triandra* and *S. caprea*. Bílovice nad Svitavou, 2006 (dark)

5,982 frass pellets. Frass pellets of imagoes were elongated, slightly irregularly strangulated, immediately after defecation dark green, later black. Male frass pellets were on average 0.725 mm long and 0.096 mm wide, female frass pellets were 0.950 mm long and 0.121 mm wide. Frass pellets of the willow form were on average 0.84 mm long and 0.11 mm wide (Table 5). According to the table, males produced on average 20.1 mm³ frass pellets for the whole period of feeding (i.e. on average 1.8 mm³/cm² damaged leaf). On the other hand, females produced on average 65.7 mm³ frass pellets (i.e. 1.8 mm³/cm² damaged leaf). Thus, it is possible to derive that individuals of both sexes used the ingested food equally effectively.

Mean leaf area damaged by the last year's imagoes of the alder biological form of *G. lineola* reared on *A. glutinosa* in the laboratory is given in Tables 6 and 7. Imagoes damaged leaves mainly during the first 3 to 4 weeks and usually died within a month. Average damaged area and average time of the life of imagoes were not (surprisingly) often in expected correlation with the date of trapping in nature. Imagoes of the alder biological form damaged on average 22.6 cm² leaves of *A. glutinosa*. Imagoes of the willow biological form damaged on average 16.5 cm² leaves of *S. fragilis* in 1999 and on average 22.7 cm² leaves of

S. caprea in 2006. The results of laboratory rearings illustrate that in spite of the larger mean size of bodies imagoes of the alder race damage after hibernation on average the same area of leaves of *A. glutinosa* as imagoes of the willow race on *S. caprea*.

Through the all-day monitoring of the feeding of male and female imagoes reared in the laboratory on leaves of *S. caprea* it was found that the imagoes ingested in the daytime and at night, however, only for rather a short time. Within 24 hours (i.e. 1,440 min), males were eating mere 52 min (3.6%) and females 252 min (17.5%). The total daily time of male feeding was divided on average into 15 partial stages by 3.5-minute intervals. Females ate on average 36 times by 7 min during the day. Breaks in feeding took in males on average 94 min and in females 34 min (Table 8). During breaks, imagoes digest and gradually defecate as much as 8 frass pellets. Eating imagoes usually do not defecate and if they do, then only 1 (scarcely 2) frass pellets.

Copulation

After about one-week (in the laboratory already four-week) intensive feeding on leaves of unfolding shoots, imagoes mate for the first time. It means that

Table 8. All-day time picture of the consumption of food and movement of imagoes of the willow biological form of *G. lineola*. Imagoes (3 males and 3 females) were reared individually on leaves of *S. caprea*. Laboratory examination, 30 May 2006

Mean values (during 24 hours, i.e. during 1,440	Males	Females	
Davied of feeding/paying of breaks in feeding	(min)	52/1,388	252/1,188
Period of feeding/period of breaks in feeding	(%)	3.6/96.4	17.5/82.5
Number of feeding stages (= number of stages of	15	36	
Period of one stage of feeding (min)		3.5	7
Period of one stage of break in feeding (min)		94	34
Number of migrations from leaves to glass	69	16	
Ditto (during one stage of a break in feeding)	4.6	0.4	

Table 9. Frequency of copulation and period of copulation of the last year's and this year's imagoes of the 1st generation of *G. lineola*. Laboratory examination, 2006

Mean value		Imag	goes	
Mean value	_	last year's (12–14 May)	this year's (2–4 August)	
	light stage of the day (6 to 18 hours)	6.5	9	
Number of copulations	dark stage of the day (18 to 6 hours)	3.7	7	
	all day (24 hours)	10.2	16	
Duration of one	light stage of the day	63	32	
copulation	dark stage of the day	72	32	
(min)	all day	67.5	32	
	light stage of the day	410/57	288/40	
Period of copulation (min/%)	dark stage of the day	266/37	224/31	
(111111/70)	all day	676/47	512/36	
Number of copulations for the whole period of (i.e. for 42 days and 47 days)		42 × 10.2 = 428	47 × 16 = 752	
Period of copulation for the whole life		428 × 67.5 = 28,890 min (= 20 days)	$752 \times 32 = 24,064 \text{ min}$ (= 16.7 days)	

before leaving for winter habitats (i.e. during the last year's maturation feeding) the imagoes do not mate under natural conditions of Moravia (with the exception of the warmest south) and usually unfertilized females hibernate. After hibernation, however, females copulate repeatedly, namely with more males. Copulating imagoes can be observed in nature nearly for the whole period of their occurrence on trees. The number and the period of copulations during the light and dark stage of the day are given in Table 9. Imagoes of the willow biological form copulated in the experiment on average 10.2 times per day, the mean period of one copulation being 67 min. During the whole day, imagoes copulated on average 676 min (47% of the day), of this 410 min (57%) in the light part and 266 min (37%) in the dark part of the day. For the whole period (on average 42 days), imagoes copulated 428 times spending on average 20 days at copulation. For the purpose of comparison, the table gives the frequency of copulation and the period of copulation of imagoes of this year's generation.

Egg laying

Fertilized females of *G. lineola* lay eggs on the abaxial face of leaves, namely in groups of up to 20 pieces (Schaufuss 1916). For example, Escherich (1923) and Živojinovič (1948) reported clutches of roughly 20 eggs and Maisner (1974) of roughly 25 eggs. According to Kožančikov (1958) females bite out small spots into the surface part of leaves (mainly into cuticula) and then lay eggs on them. Brovdij (1973) also described the biting out of small holes. According to the author, the groups consist

of 2 to 14 (scarcely even 18) eggs. Specified numbers of eggs in clutches (10 to 20) were mentioned by Kožančikov (1958), Häggström (1997) and Höglund et al. (1999). Kendall and Wiltshire (1998) identified clutches of 13 to 20 eggs. According to our studies, females lay eggs into groups of 3 to 20 (on average 14). The mean group of eggs is laid during about 26 min, i.e. one egg on average during 1 min and 51 sec.

The first eggs occur in nature after 7 to 10-day (in the laboratory 5-day) feeding. The period of the

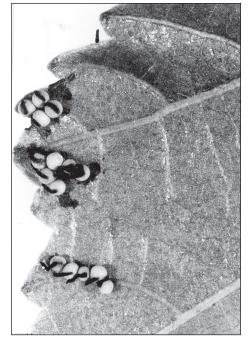


Fig. 8. Eggs of *G. lineola* on the abaxial face of leaves of *A. glutinosa*. Polnička, 4 June 1998

Table 10. Localization of eggs of the alder biological form of *G. lineola* in rearings on *A. glutinosa* and willow biological form in rearings on *S. fragilis*. Laboratory examination, 1995 to 1998

Localization of eggs	Last year	Last year's females		's females	Females in total		
	alder biological form	willow biological form	alder biological form	willow biological form	alder biological form	willow biological form	
Abaxial face	5,426/71.6	262/73.0	1,276/74.7	2,258/78.1	6,702/72.2	2,520/77.5	
Adaxial face	2,064/27.2	95/26.5	397/23.2	581/20.1	2,461/26.5	676/20.8	
Glass	81/1.1	2/0.5	10/0.6	53/1.8	91/1.0	55/1.7	
Petiole	6/0.1	_	25/1.5	_	31/0.3	_	
Total	7,577/100.0	359/100.0	1,708/100.0	2,892/100.0	9,285/100.0	3,251/100.0	

occurrence of eggs of the alder biological form in Polnička in 1996 and of the willow form in Bílovice nad Svitavou in 2006 is illustrated in Fig. 7. In Polnička, eggs occurred from 19 May to 8 August (i.e. about 3 months). In Bílovice nad Svitavou, eggs occurred from 12 May to 21 July (i.e. about 2.5 months). Females of the alder form laid eggs in the laboratory on average less than 4 (max. 6) weeks (Table 4). Females of the willow form laid eggs in the laboratory on average 5 (max. 7) weeks (Table 5). Females of the alder form lived on average 9 days after egg-laying and females of the willow form 6 days. Usually no unlaid eggs occurred in the ovaries of naturally died females. According to Brovdij (1973) females lay eggs for the period of mere 20 to 30 days.

Eggs of G. lineola (Fig. 8) are markedly orangeyellow, lengthwise oval and rounded. Their length is on average 0.62 mm and width 0.47 mm (according to Brovdij [1973] 0.76 and 0.58 mm, respectively). During their embryonal development, the mean length of eggs increases up to 0.74 mm and width to 0.61 mm. On the surface of the rather tough leathery chorion, there are tiny light brown dimples of pentagonal shape. Dimples 0.005 to 0.011 mm in size cover the whole surface of eggs. At the place of a micropyle, dimples are very fine. Eggs are masked by small frass pellets 0.5 mm in diameter and 0.1 mm in width. These frass pellets are roughly twice smaller than frass pellets defecated during numerous breaks in feeding. They separately cover most of the eggs often passing to neighbouring eggs, seldom a leaf. Thus, they help to fix eggs in groups or to a leaf. Eggs are stuck to leaves by means of sticky secretion, namely usually perpendicularly to the leaf surface. Before egg laying, females often nibble the leaf epidermis at the place of oviposition, thereby removing eventual hairs. Thus, the close contact of eggs with a leaf which significantly stimulates their embryonal development is enabled. In nature, females lay eggs almost exclusively on the abaxial face of leaves. Sporadically, eggs occur on the bark of young shoots (e.g. in osier plantations on the bark of S. viminalis). Groups of eggs laid on bark consist only of 2 to 9 eggs. Females place eggs usually on the subapical part of the leaf blade or along the periphery of the leaf blade apical half. For example, on leaf blades of S. viminalis 7.5 cm long, the majority of the eggs was localized at a distance of about 10 mm from the leaf tip. Leaves in the upper half of shoots are laid by eggs most. The mean number of eggs in groups laid by females of the willow form from the beginning of the period of egg-laying to mid-June slightly increases and later sharply decreases. For example, about 20 May, females caught in 1975 in a S. viminalis plantation in Prosenice (former Přerov District) laid on average 11 eggs into groups. In mid-June, there were on average 17 eggs in groups and about 10 July ca. 6 eggs. According to Brovdij (1973) the number of eggs in groups gradually increases from the beginning of oviposition.

In laboratory rearings, females of both biological forms laid on average 72.3% eggs on the abaxial face of leaves, 26.8% eggs on the adaxial face of leaves, 0.8% eggs on glass walls of rearing trays and 0.1% eggs on petioles (Table 10). For the purpose of comparison, the table also gives the localization of eggs laid by this year's females. In contrast to natural conditions, females in captivity laid eggs both individually and in open groups (with interspaces) as well as in compact groups. In groups, on average 7.9 eggs were laid, of this on average 4.8 eggs to compact groups and 16.7 eggs to open groups (Table 11).

The fecundity of *G. lineola* females is high (112 to 675 – on average 550 – eggs). For example, females of the willow biological form caught in natural conditions on 12 May 2006 and fed on leaves of *S. caprea* laid 457 to 791 (on average 612) eggs during 40 days, namely on average up to 45 partial clutches by 14 eggs (Table 5). Every day, females laid on average 15 eggs to 1.1 clutches. In the period of the most intensive feeding (in about mid-June), they laid up to 30 eggs to 2.1 clutches per day. The females of the alder biological form also show high fecundity (as many as

Table 11. Number of eggs of the alder biological form of *G. lineola* laid on leaves of *A. glutinosa* to compact and open groups of eggs. Laboratory rearings, 1995 to 1999

	Compact grou	ps of eggs	Open groups	s of eggs	Groups total		
Number of eggs per group	number of groups/number of eggs	(%)	number of groups/number of eggs	(%)	number of groups/number of eggs	(%)	
1	169/169	19.3/4.0	_	_	169/169	14.3/1.8	
2	145/290	16.5/6.8	_	_	145/290	12.3/3.1	
3	161/483	18.4/11.4	_	_	161/483	13.6/5.2	
4	108/432	12.3/10.2	_	_	108/432	9.1/4.6	
5	59/295	6.7/7.0	_	_	59/295	5.0/3.2	
6	48/288	5.5/6.8	_	_	48/288	4.1/3.1	
7	36/252	4.1/5.9	_	_	36/252	3.1/2.7	
8	26/208	3.0/4.9	3/24	1.0/0.5	29/232	2.4/2.5	
9	24/216	2.8/5.1	4/36	1.3/0.7	28/252	2.4/2.7	
10	8/80	0.9/1.9	11/110	3.7/2.2	19/190	1.6/2.1	
11	9/99	1.0/2.3	6/66	2.0/1.3	15/165	1.3/1.8	
12	13/156	1.5/3.7	12/144	4.0/2.8	25/300	2.1/3.2	
13	9/117	1.0/2.7	11/143	3.6/2.8	20/260	1.7/2.8	
14	12/168	1.4/4.0	22/308	7.3/6.2	34/476	2.9/5.1	
15	2/30	0.2/0.7	22/330	7.3/6.5	24/360	2.0/3.9	
16	7/112	0.8/2.6	40/640	13.2/12.7	47/752	4.0/8.1	
17	9/153	1.0/3.6	33/561	10.9/11.1	42/714	3.6/7.7	
18	10/180	1.1/4.2	48/864	15.9/17.2	58/1,044	4.9/11.2	
19	2/38	0.2/0.9	35/665	11.6/13.2	37/703	3.1/7.6	
20	8/160	0.9/3.8	40/800	13.2/15.9	48/960	4.1/10.4	
21	3/63	0.4/1.5	5/105	1.6/2.1	8/168	0.7/1.8	
22	1/22	0.1/0.5	3/66	1.0/1.3	4/88	0.3/1.0	
23	_	_	2/46	0.7/0.9	2/46	0.2/0.5	
24	3/72	0.3/1.7	2/48	0.7/1.0	5/120	0.4/1.3	
25	3/75	0.3/1.8	2/50	0.7/1.0	5/125	0.4/1.4	
26	1/26	0.1/0.6	_	_	1/26	0.1/0.3	
27	_	_	_	_	_	_	
28	1/28	0.1/0.7	_	_	1/28	0.1/0.3	
29	_	_	1/29	0.3/0.6	1/29	0.1/0.3	
30	1/30	0.1/0.7	_	_	1/30	0.1/0.3	
Total	878/4,242	100.0/100.0	302/5,035	100.0/100.0	1,180/9,277	100.0/100.	
Even number of eggs in			181/3,004	59.9/59.7	573/5,256	48.6/56.7	
Odd number of eggs in			121/2,031	40.1/40.3	607/4,021	51.4/43.3	
Mean number of eggs	4.8		16.7		7.9		

687 eggs). The fecundity of the last year's females which were reared from eggs and hibernated in a refrigerator or under outdoor conditions was much lower (112 to 257 – on average 170 – eggs). According to Brovdi (1973) females lay eggs with breaks lasting 1 to 2 days and, in total, they lay about 200 eggs (according to Kožančikov [1958] about 185 eggs).

The females have by 10 meristic ovarioles in the ovaries. Thus, eggs develop maximally in 20 ovarioles

at the same time. At the synchronized development of eggs in all ovarioles, females could theoretically lay always 20 eggs into a group. Owing to deviations in the function of ovarioles the number of eggs in particular clutches is, however, usually lower. Moreover, females very often lay the supply of mature eggs into 2 (or even more) partial groups.

In laboratory rearings, females laid 1 to 30 eggs to one place and sporadically located eggs even to

previously laid clutches (Table 11). According to the table it is evident that the pair structure of ovaries markedly reflects in the number of eggs in groups (in spite of irregularities in their function). In groups with the even number of eggs there occurred 56.7 to 59.7% of eggs whereas in groups with the odd number of eggs there was only 40.3 to 43.3% of eggs.

Natural enemies of imagoes

Extreme weather conditions during hibernation and during the beginning of the growing season are the main regulator of the abundance of *G. lineola*. Under mild and moist winters, a considerable part of exhausted imagoes is subject to the attack of entomopathogenic fungi, particularly *Beauveria bassiana* (Bals.) Vuill. Long-term floods can also affect wintering beetles unfavourably. Under conditions of precocious warming, beetles activate even before budbreak and subsequently die of hunger. Beetles are often killed by various predators, e.g. birds (Aves) (LUNDVALL et al. 1998), predatory insects (Insecta) and spiders (Aranea). In China, imagoes are infected by *Nosema aenescens* sp. nov. (Microspora, Nosematidae) (Wen, Huang 1995).

Townesilitus fulviceps (Ruthe) (Braconidae) was reared from about 5% of the last year's and this year's imagoes of the alder biological form in Polnička. It is the first finding of the species in the area of the CR. The braconid is known from England, France, Sweden, Austria, Russia and Kazakhstan (HAESELBARTH 1988).

In 1996, about 50% of the last year's imagoes of the alder form were parasitized by *Medina collaris* (Fall.) (Tachinidae) in Polnička. To a smaller extent, the last year's (and particularly this year's) imagoes of the willow form were parasitized by a tachina in Bílovice nad Svitavou. In a *S. viminalis* plantation in Prosenice (former Přerov District) in 1975, a negligible part of imagoes (about 1%) was parasitized by nematodes of the family Mermithidae (det. prof. I. Rubcov, Saint Petersburg) (Urban 1981). Other information on natural enemies of *G. lineola* is given in Part 2 of the paper.

References

- ARNOLDI L.V. et al., 1955. Otrjad Coleoptera– žestkokrylye, ili žuki. In: PAVLOVSKIJ E.N. et al., Vrediteli lesa. II. Moskva, Leningrad, Izdateľstvo AN SSSR: 425–737.
- BROVDIJ V.M., 1968. Ekologija i praktyčne značennja žovtoho verbovoho listojida (*Galerucella lineola* F.). Kiev, DAN URSR, 2(B): 176–179.
- BROVDIJ V.M., 1973. Fauna Ukrajiny. Tom 19. Vip. 17. Žuki-listoedi. Galerucini. Vidavnictvo Naukova dumka, Kiev: 300.

- CALWER C.G., 1876. Käferbuch. 4. Auflage. Stuttgart, J. Hoffman Verlag: 668.
- CZERNIAKOWSKI Z.W., 2002. Chrząszcze stonkowate (Col., Chrysomelidae) na plantacjach wikliny amerykanki (*Salix americana* Hoedt.). Progress in Plant Protection, 42: 215–219.
- DENNO R.F., LARSSON S., OLMSTEAD K.L., 1990. Role of enemy-free space and plant quality in host-plant selection by willow beetles. Ecology, *71*: 124–137.
- ECKSTEIN K., 1897. Forstliche Zoologie. Berlin, Verlagsbuchh. P. Parey: 664.
- ESCHERICH K., 1923. Die Forstinsekten Mitteleuropas. 2. Bd. 1. Abt. Berlin, Verlagsbuchh. P. Parey: 663.
- FLEISCHER A., 1927–1930. Přehled brouků fauny Československé republiky. Brno, Nákladem Moravského musea zemského: 483.
- GÄBLER H., 1955. Forstschutz gegen Tiere. Radebeul, Berlin, Neumann Verlag: 368.
- GHARADJEDAGHI B., 1997. Phytophage Arthropoden an Erlen (*Alnus* spp.) in bachbegleitenden Gehölzsäumen Oberfrankens. Teil 1: Klopfprobenuntersuchung. Forstwissenschaftliches Centralblatt, *116*: 158–177.
- HAESELBARTH E., 1988. Zur Braconidengattung *Townesilitus* Haeselbarth & Loan, 1983. Zeitschrift für Entomologie, 9: 429–460.
- HÄGGSTRÖM H.E., 1997. Variable plant quality and performance of the willow-feeding leaf beetle *Galerucella lineola*. [Doctoral Thesis.] Acta Universitatis Agriculturae Sueciae, Silvestria, 42: 25.
- HÄGGSTRÖM H., LARSSON S., 1995. Slow larval growth on a suboptimal willow results in high predation mortality in the leaf beetle *Galerucella lineola*. Oecologia, *104*: 308–315.
- HALLGREN P., 2002. Ecological consequences of plant hybridization in willows: inheritance patterns of secondary compounds and herbivore foraging behaviour. Acta Universitatis Agriculturae Sueciae, Silvestria, 259: 24.
- HANSEN V., HENRIKSEN K., 1927. Bladbiller (Chrysomelidae). *Galerucella*. Danmarkes Fauna, Biller, 7: 401.
- HELLÉN W. et al., 1939. Catalogus Coleopterorum Daniae et Fennoscandiae. Helsingforsiae, Societas Fauna et Flora Fennica: 129.
- HENSCHEL G., 1876. Leitfaden zur Bestimmung der schädlichen Forst- u. Obstbaum-Insekten. Berlin, Verlag P. Parey: 270.
- HENSCHEL G., 1895. Die schädlichen Forst- und Obstbaum-Insekten. Berlin, Verlag P. Parey: 758.
- HÖGLUND S., EKLUND K., BJÖRKMAN C., 1999. Outbreaks of three leaf beetles species in *Salix* plantations. Vaxtskyddsnotiser, *63*: 20–26.
- HUNTER T., 1992. Pest and disease problems in willow biomass plantations. In: Proceedings of Wood-Energy and the Environment, Oxford: 105–109.
- IKONEN A., SIPURA M., MIETTINEN S., TAHVANAINEN J., 2003. Evidence for host race formation in the leaf beetle

- *Galerucella lineola*. Entomologia Experimentalis et Applicata, *108*: 179–185.
- KADŁUBOWSKI W., CZALEJ B., 1962. Skład gatunkowy i dynamika populacji chrząszczy występujących na plantacjach wikliny w powiecie Nowy Tomysł. Práce Komisji Nauk Rolniczych i Komisji Nauk Leśnych, 13: 53–69.
- KENDALL D.A. et al., 1996. Susceptibility of willow clones (*Salix* spp.) to herbivory by *Phyllodecta vulgatissima* (L.) and *Galerucella lineola* (Fab.) (Coleoptera, Chrysomelidae). Annals of Applied Biology, *129*: 379–390.
- KENDALL D.A., WILTSHIRE C.W., 1998. Life-cycles and ecology of willow beetles on *Salix viminalis* in England. European Journal of Forest Pathology, 28: 281–288.
- KLAPÁLEK F., 1903. Atlas brouků středoevropských. Část II. Praha, I.L. Kober: 382.
- KOEHLER W., SCHNAIDER Z., 1972. Owady naszych lasów. Warszawa, Państwowe Wydawnictwo Rolnicze i Leśne: 99.
- KOLEHMAINEN J. et al., 1995. Phenolic glucosides as feeding cues for willow-feeding leaf beetles. Entomologia Experimentalis et Applicata, 74: 235–243.
- KOVAČEVIČ Ž., 1957. Die Probleme des Forstschutzes in Jugoslawien. Anzeiger für Schädlingskunde, *30*: 65–69.
- KOŽANČIKOV I.V., 1958. Biologičeskie osobennosti evropejskich vidov roda *Galerucella* i uslovija obrazovanija biologičeskich form u *Galerucella lineola* F. Trudy Zoologičeskogo Instituta Akademii Nauk SSSR, 24: 271–322.
- KUHNT P., 1913. Illustrierte Bestimmungstabellen der Käfer Deutschlands. Stuttgart, E. Schweizerbartische Verlagsbuchh.: 1139.
- LARSSON S. et al., 1986. Effects of light and nutrient stress on leaf phenolic chemistry in *Salix dasyclados* and susceptibility to *Galerucella lineola* (Coleoptera). Oikos, 47: 205–210.
- LARSSON S., HÄGGSTRÖM H.E., DENNO R.F., 1997. Preference for protected feeding sites by larvae of the willow-feeding leaf beetle *Galerucella lineola*. Ecological Entomology, 22: 445–452.
- LOPATIN J.K., 1960. Materialy po faune i ekologii žukov-listoedov (Coleoptera, Chrysomelidae) južnogo Zadneprovja. Entomologičeskoje Obozrenije, 39: 629–642.
- LUNDVALL P., NEUVONEN S., HALONEN M., 1998. Interspecific differences in the susceptibility of adult leaf beetles (Col., Chrysomelidae) to predation by willow warblers (*Phylloscopus trochilus*). Reports from the Kevo Subarctic Research Station, 22: 19–24.
- MAISNER N., 1974. Chrysomelidae, Blattkäfer. In: SCHWEN-KE W. et al., Die Forstschädlinge Europas. 2. Bd. Hamburg, Berlin, Verlag P. Parey: 202–236.
- MATESOVA G.J., MITJAJEV I.D., JUCHNEVIČ L.A., 1962. Nasekomye i klešči – vrediteli plodovo-jagodnych kultur Kazachstana. Alma-Ata, Izdateľstvo Akademii Nauk Kazachskoj SSR: 204.
- MEDVEDEV L.N., ŠAPIRO D.S., 1965. Sem. Chrysomelidae listoedy. In: BEJ-BIENKO G.J., Opredelitel nasekomych

- evropejskoj časti SSSR. II. Moskva, Leningrad, Izdateľstvo Nauka: 419–474.
- MOHR K.H., 1966. Familie: Chrysomelidae. In: FREUDE H., HARDE K.H., LOHSE G.A., Die Käfer Mitteleuropas. 9. Krefeld, Goecke, Evers: 95–280.
- NÜSSLIN O., RHUMBLER L., 1922. Forstinsektenkunde. Berlin, Verlagsbuchh. P. Parey: 568.
- OGLOBLIN V., 1936. Listoedy, Galerucinae. Fauna SSSR. Nasekomye žestkokrylye. Moskva, Leningrad, Izdateľstvo AN SSSR, 26: 455.
- PEACOCK L., LEWIS M., POWERS S., 2001. Volatile compounds from *Salix* spp. varieties differing in susceptibility to three willow beetle species. Journal of Chemical Ecology, *27*: 1943–1951.
- PERNERSDORFER M., 1941. Untersuchungen über die Futterpflanzen einheimischer Chrysomeliden unter Ausschluss der Halticinen. Heidelberg, Verhandlungen des Naturhist.-Medizin. Vereins zu Heidelberg, 18: 332–361.
- RANK N.E. et al., 1998. Host preference and larval performance of the salicylate-using leaf beetle *Phratora vitellinae*. Ecology, 79: 618–631.
- RAUPP M.J., SADOF C.S., 1991. Responses of leaf beetles to injury-related changes in their salicaceous hosts. In: Phytochemical Induction by Herbivores. New York, J. Wiley: 183–204.
- REITTER E., 1912. Fauna Germanica. IV. Stuttgart, K.H. Lutz Verlag: 236.
- ROUBAL J., 1937–1941. Katalog Coleopter (brouků) Slovenska a východních Karpat. III. Praha, Nakladatelství Orbis: 363.
- SADEGHI S.E. et al., 2004. Study on biology of alder brown leaf beetle, *Galerucella lineola* (Col., Chrysomelidae) in Golestan Province of Iran. Journal of Entomological Society of Iran, 24: 99–120.
- SAGE R.B., TUCKER K., 1997. Invertebrates in the canopy of willow and poplar short rotation coppices. Aspects of Applied Biology, *49*: 105–111.
- SAGE R.B. et al., 1999. Post hibernation dispersal of three leaf-eating beetles (Coleoptera, Chrysomelidae) colonising cultivated willows and poplars. Agricultural and Forest Entomology, *1*: 61–70.
- SCHAUFUSS C., 1916. Calwer's Käferbuch. II. Stuttgart, E. Schweizerbartische Verlagsbuchh.: 1390.
- SELDAL T. et al., 1994. Wound-induced proteinase inhibitors in grey alder (*Alnus incana*): a defence mechanism against attacking insects. Oikos, *71*: 239–245.
- SIPURA M., TAHVANAINEN J., 2000. Shading enhances the quality of willow leaves to leaf beetles but does it matter? Oikos, *91*: 550–558.
- SIPURA M. et al., 2002. Why does the leaf beetle *Galeru-cella lineola* F. attack wettland willows? Ecology, 83: 3393–3407.
- SORAUER P. et al., 1932. Handbuch der Pflanzenkrankheiten. 5. Band, 4. Auflage, 2. Teil. Berlin, Verlagsbuchh. P. Parey: 500.

- TAHVANAINEN J., JULKUNEN-TIITO R., KETTUNEN J., 1985. Phenolic glycosides govern the food selection pattern of willow feeding leaf beetles. Oecologia, *67*: 52–56.
- TUINZING W.D.J., 1946. Ziekten en plagen van den wilg in grienden. Landbouwkundig Tijdschrift, 58: 693–744.
- TURANLI F. et al., 2003. The faunistical studies on the subfamilies Donaciinae and Galerucinae (Coleoptera, Chrysomelidae) species preserved in Prof. Dr. Niyazi Lodos Museum. Turkiye Entomoloji Dergisi, *27*: 131–140.
- URBAN J., 1981. Výsledky studia bionomie a hospodářského významu salicikolních mandelinkovitých (Chrysomelidae) ve vrbovnách na Moravě. Část I. Acta Universitatis Agriculturae (Brno), Ser. *C*, *50*: 93–116.
- VICENTE C.D. et al., 1998. Entomología agroforestal. Madrid, Ediciones Agrotécnicas, S.L.: 1309.
- WAGNER H., ORTMANN C., 1959. Anbau und Nutzung der Flechtweiden. Berlin, Dtsch. Bauernverlag: 206.

- WARCHALOWSKI A., 1973. Klucze do oznaczania owadów Polski. Ceść XIX. Zeszyt 94a. Warszawa, Państwowe Wydawnictvo Naukowe: 98.
- WEN J.Z., HUANG H., 1995. Note on *Nosema aenescens* sp. nov. (Microspora, Nosematidae), a parasite of *Pyrrhalta aenescens* (Fairmaire) (Coleoptera, Chrysomelidae). Acta Zootaxonomica Sinica, 20: 129–132.
- WIRÉN A., LARSSON S., 1984. Preferences of insects for different willow clones: a case study with *Galerucella lineola* (Col., Chrysomelidae). In: PERTTU K., Ecology and management of forest biomass production systems. Raport, Institutionen for Ekologi och Miljovard, Sveriges Lantbruksuniversitet, No. 15: 383–389.
- ŽIVOJINOVIČ S., 1948. Šumarska entomologia. Beograd, Izd. preduzece narodne republ. Srbije: 430.

Received for publication March 2, 2007 Accepted after corrections April 26, 2007

Výskyt, biologie a škodlivost *Galerucella lineola* (F.) (Coleoptera, Chrysomelidae) – Část 1. Loňští (mateřští) brouci

ABSTRAKT: Hojného výskytu *Galerucella lineola* (F.) na Moravě bylo v letech 1995 až 2006 využito k vyšetření jejího výskytu, biologie a škodlivosti. Olšová biologická forma byla studována na *Alnus glutinosa* a *A. incana* hlavně na polesí v Polničce (Žďársko) a vrbová forma na *Salix viminalis*, *S. triandra* a *S. caprea* v břehových a doprovodných porostech řeky Svitavy poblíž Bílovic nad Svitavou (Brněnsko). Imaga opouštějí zimoviště obvykle v první polovině května. Během 2,5 až tří měsíců poškodí průměrně 22,6 cm² listů *A. glutinosa* a *S. caprea* (z toho samečci 3,2krát méně než samičky). Samečci žerou během 24 hodin průměrně 15krát po dobu 3,5 minut, tj. 52 minut (3,6 % dne). Samičky žerou denně průměrně 36krát po dobu 7 minut, tj. 252 minut (17,5 % dne). Imaga kopulují průměrně 10,2krát denně po dobu 67 minut. Za celou dobu rozmnožování (kolem 42 dnů) kopulují průměrně 428krát, tj. plných 20 dnů. Vajíčka kladou do 3 až 20členných (průměrně 14členných) skupin. Samičky vykladou 457 až 791 (průměrně 612) vajíček, tj. kolem 15 vajíček denně. K nepřátelům imag patří mj. *Medina collaris* (Fall.) (Tachinidae) a *Townesilitus fulviceps* (Ruthe) (Braconidae).

Klíčová slova: Chrysomelidae; *Galerucella lineola*; hostitelské dřeviny; hibernace; žír; loňská imaga; rozmnožování; přirození nepřátelé

Corresponding author:

Prof. RNDr. Ing. Jaroslav Urban, CSc., Mendelova zemědělská a lesnická univerzita v Brně, Lesnická a dřevařská fakulta, Lesnická 37, 613 00 Brno, Česká republika tel.: + 420 545 134 121, fax: + 420 545 211 422, e-mail: urbanj@mendelu.cz