Cereal β-glucans and their Significance for the Preparation of Functional Foods – A Review

MICHAELA HAVRLENTOVÁ1, ZUZANA PETRULÁKOVÁ2, ALENA BURGÁROVÁ2, FRANTIŠEK GAGO3, ANDREA HLINKOVÁ1,3 and ERNEST ŠTURDIK2,3

1Plant Production Research Centre, Research Institute of Plant Production, Piešťany, Slovak Republic; 2Slovak University of Technology, Faculty of Chemistry and Food Technology, Department of Nutrition and Food Evaluation, Bratislava, Slovak Republic; 3University of SS. Cyril and Methodius in Trnava, Faculty of Natural Sciences, Department of Biotechnologies, Trnava, Slovak Republic

Abstract

Cereals are generally known to have a positive influence on the general state of the human organism. The attention of the nutritional experts is paid especially to oats and barley. Besides their accessibility, these cereals are interesting due to their relatively high contents of soluble non-starch polysaccharides (fibrous material), out of which β-glucans have a dominant position from the aspect of health benefit. This paper presents a brief review of the latest knowledge on the positive effects of β-glucans on the consumer’s health. The structure, occurrence, sources, and positive physiological effects of β-glucans on the cardiovascular system but also their antibacterial, antitumoral, immunomodulant, and radioprotective properties are mentioned. In the paper are given examples of β-glucans exploitation as functional ingredients in food, cosmetic, and pharmaceutical industries and as food additives on the basis of cereal fibres and cereal β-glucans.

Keywords: cereals; oats; β-glucans; fibre; functional food; health benefit; application

Food industry aims at the development of new products towards functional foods and ingredients with regard to the consumer’s demands on healthy nutrition. Functional foods are eatables which besides their initial function (satiation and nutrition of the organism) provide also a health benefit to the consumer. Such foods affect the organism by improving the functions of individual organs, by decreasing the risk of becoming ill with respect to their prophylactic action, and also by optimising the weight and influencing the mental state. Functional foods are aliment diminishing the risk of many chronic and infectious diseases. They are traditional foods modified so as to achieve their favourable health effects which are not present in the non-modified products. Contrary to conventional foods where the emphasis is laid primarily on the nutritive and sensory functions, the functional foods are characterised by giving preference to the physiological functions, i.e. to the regulation of the protective mechanisms, physical condition, prevention of ageing, and to the prevention and medical treatment of diseases associated with the diet. The functional food must fulfil the follow-

Supported by the Project APVV-LPP-0251-07 and “BIFUGEN” from the Ministry of Agriculture of the Slovak Republic.
ing requirements: it must be a food consisting of natural components, not a tablet or powder; it can and should be consumed as part of the daily meals; its special regulation lies in the regulation of the particular process ongoing in the human organism. When preparing functional foods, a certain portion should consist of food naturally enriched with vitamins, minerals, antioxidants, suitable enzymes, etc.

Functional foods are composed of the carrier and the active component, which has a proven health effect. The carrier is a common basis of food which must fulfil the prescribed criteria. The food must be suitable for regular and repeated consumption. From the technological aspect, it must be suitable for the application of the active component which must not react with it undesirably. From the practical point of view, the functional food can be: (i) natural food, some component of which was enriched via special cultivation conditions, (ii) food to which the component with an evident favourable action was added, (iii) food from which the respective component was removed to reduce the negative health effect, (iv) food in which the nature of one or more components was chemically modified to reach a better absorption of the beneficial component, and (v) combination of the above-mentioned possibilities (Andlauer & Furst 2002; Charalampopoulos et al. 2002; Bressani 2003).

The best-known examples of functional foods are fermented milks and yogurts containing a special kind of bacterium that positively affects human intestines. Moreover, fermented milk products have recently become popular because of their low cholesterol content. In the European market, energetic drinks are also very popular.

Another alternative of functional foods is cereals due to their wide accessibility. Cereals or the cereal components may be applied into functional foods as: (i) fermented substrates for the growth of probiotic microorganisms, especially Lactobacillus and Bifidobacterium strains, (ii) fibrous material supporting some favourable physiological effects, (iii) prebiotics (due to the content of specific indigestible saccharides), (iv) encapsulating material for probiotics to improve their stability (Andlauer & Furst 2002; Charalampopoulos et al. 2002).

In this study, attention is paid to an important part of the fibre – β-glucans and their significance in maintaining favourable effects on human health. The work offers approximately 10-year review of the knowledge gathered from local and foreign literature sources and from the research carried out mainly into cereal β-glucans (sources, medical aspects, detection methods, etc.). The possibilities of their application as functional ingredients in the production of cereal foods are also discussed.

Dietary fibre

Fibrous material is the edible part of plants which is resistant to the hydrolysis by enzymes in the digestive tract. A part of it is metabolised into volatile fatty acids in the gastrointestinal tract. Following its water solubility, fibrous material can be divided into two categories. Each category insures different therapeutic effects. Water-soluble fibre predominantly consists of non-starch polysaccharides, mainly β-glucans and arabinobxygen. It produces a viscous solution. Soluble fibre inhibits passing of the chyme through the intestines, hampers the stomach discharge, reduces the absorption of glucose and sterols in the intestines, and decreases serum cholesterol, blood glucose, and the content of insulin in the human body. The water-insoluble fibre contains lignin, cellulose, hemicellulose, and non-starch polysaccharides such as the water-extractable arabinobxygen. It is not fermented in the large intestine (AACC 2001; Andlauer & Furst 2002; Charalampopoulos et al. 2002).

Cereal grains have different fibre contents. In cereal grain, a majority of fibre is found (at a decreasing rate) from the outer coat to the endosperm. This does not apply to arabinobxygen, which is a principal component of the endosperm cell wall. The methods of the fibre isolation and purification as well as the techniques implying quantitative and structural analyses have been developed to isolate the fibre from the common cereal fractions obtained in the grinding process. The elaborated procedure of the cereals processing (grinding) makes it possible to obtain products from the particular structural grain layer (Bressani 2003; Lambo et al. 2005).

It is however necessary to mention also some negative aspects of food fibre in human nutrition. The exploitation of the outer part of the grain also brings about certain risks of contamination with heavy metals, radioactive elements, and residue of pesticides used either in the period of vegetation or during the processing and warehousing. Proportionally to the increase of the fibre content in the cereal products, a growing proportion of phytic acid is observed. This acid together with
calcium and magnesium, but also with iron, zinc, and copper generates water-insoluble complexes and thereby unfavourably influences their efficiency (for review see Rodriguez & Saura-Calixto 1991). The potential negative effects of dietary fibre include reduced absorption of vitamins, minerals, proteins, and calories (Marlett et al. 2002). Excessive amounts of dietary fibre caused diarrhea (Saibil 1989) and its fermentation by anaerobic bacteria in the large intestine produces gas, including hydrogen, methane, and carbon dioxide, which may be related to the complaints of distention and flatulence (Marlett et al. 2002). A higher intake of whole grain breakfast cereals can be also associated with a lower risk of the heart failure (Djoussé & Gaziano et al. 2007) while the beneficial blood pressure regulating effect is valid only for patients with mild hypertension (Keenan et al. 2002). Vega-Lopez et al. (2001, 2002) have reported that the positive effect of psyllium intake on triglycerides and lipoproteins metabolism, respectively, was not detected in pre-menopausal women in comparison with men, with whom this dietary fibre component shows to decrease plasma insulin, apolipoprotein CIII, and apolipoprotein E.

It follows that the problem of the food fibre has not been sufficiently investigated so far and the opinions on its role in the human nutrition differ. What can be considered as definitive is the opinion of experts who claim that the content of soluble non-starch fibrous polysaccharides represented by the β-glucans group is most important for the healthy nutrition directed mainly to oats and barley (AACC 2001; Lambo et al. 2005). The interest in a single component may further our understanding of the whole but should not suggest supremacy of any one item. An analogy is the orchestra: It is important to discuss and understand each instrument, yet we must also recognise how the instruments interrelate (Eastwood & Kritchevsky 2005).

β-glucans – structure, occurrence, and sources

β-glucans are indigestible polysaccharides occurring naturally in various organic sources such as corn grains, yeasts, bacteria, algae. They are important components of the fibres containing unbranched polysaccharides consisting of β-D-glucopyranose units linked through (1→4) and (1→3) glycosidic bonds in cereals (Figure 1) and (1→6) glycosidic bonds in fungal sources (Figure 2), respectively. The structure has an impact on the water solubility of β-glucans. Extensive research has been done into the structure and properties of watersoluble β-glucans in contrast to water-insoluble β-glucans (Johansson et al. 2000; Ren et al. 2003). Generally, no sharp distinction exists between the soluble and insoluble fractions and the ratio is highly dependent on the extraction conditions of the soluble fibre (Virkki et al. 2005). Glucans are usually concentrated in the internal aleurone and subaleurone endosperm walls (Charalampopoulos et al. 2002; Demirbas 2005; Holtekjølen et al. 2006). Out of cereals, the highest amounts of β-glucans are found in barley and oat grains (Havrletova & Kraic 2006, Table 1). Literature data indicating the yields of β-glucans in different cereal-based food sources are listed in Table 2.

Currently, a renaissance of barley for human food and nutrition can be observed in many countries of the world (Ehrenbergerová et al. 2008) and barley fiber plays several beneficial roles in improving human health (Newman et al. 1989; Newman & Newman 1991; Ehrenbergerová et al. 1999). Increased levels of β-glucan have been reported in hull-les waxy barley (Ehrenbergerová et al. 2003, 2008; Procházková et al. 2004), its content being affected by the environmental conditions and their interactions with varieties (Ehrenbergerová et al. 2008). Hull-les barley has been successfully used

![Figure 1. Basic structure of β-glucans in cereals with combined bonds β-(1→3) and β-(1→4)](image-url)
in food, feed, and industrial applications (Bhatt 1986) and effects on the baking properties of flour used in bakery products and bread have been determined (Newman et al. 1990; Andersson et al. 2004).

The potential use of oats in the production of functional foods is bound to the nutritional value of the grain, in particular to the content and composition of dietary fibre, proteins, and lipids, respectively (Demirbas 2005). Thanks to dietary fibre, especially soluble β-glucan, a health claim was published about the beneficial effects of oats (FDA 1997). Higher amounts of β-glucans are observed in naked oats compared to hulled ones (Grausgruber et al. 2004; Havrlentová 2009), their content being affected by the genotype and environment (Ames et al. 2006; Havrlentová 2009).

Microbial glucans can be found generally inside or on the surface of microbial cells or are excreted by microbial cells into the neighbouring environment extracellularly. Surface glucans are carriers of the immunochemical specificity. Some of them, such as (1→3)-β-d-glucans, can stimulate the immune mechanisms of the host and have also antitumour and antimicrobial effects (Ooi & Liu 2000; Větvička et al. 2002; Větvička & Yvin 2004). The most frequently studied β-glucans obtained from mushrooms include lentinan from Lentinus edodes, grifolan (also called GRN and grifolan LE) from Grifola frondosa, schizophyllan (called also SPG, sonifilan, sizofiran, and sizofilan) from Schizophyllum commune, SSG from Sclerotinia sclerotiorum, PSK (called also crestin), and PSP (polysaccharide peptide) from Coriolus versicolor (Chang 1996), and β-glucan isolated from Pleurotus ostreatus called pleuran.

According to the experimental results and clinical studies, fungal β-glucans are characterised by antibacterial, antiviral, and immunomodulating properties utilisable for the prevention and therapy in human medicine (macrophage stimulation through the β-glucans receptors located on their surfaces) (Karácsonyi & Kunia 1994; Kubala et al. 2003; Tsukada et al. 2003). Further biological effects of β-glucans, which may be prospectively utilised in the clinical practice, can reside in the stimulative action on the haematopoiesis of the bone marrow, and also in the radioactive and antimutagenic effects (scavengers of free radicals) (Hirasawa et al. 1999).

Detection methods

Based on the new knowledge gathered in the last eight years on the detection of β-glucans in cereals, especially oats (Ren et al. 2003; Johansson et al. 2004; Tosh et al. 2004) and barley (Zhang et al. 2002; Burkus & Temelli 2003; Rimsten 2003), frequently applied methods are predominantly the enzymatic ones using α-amylase, 1,3 and 1,4-β-d-glucanase, and β-d-glucosidase, cellulase, or lichenase (Genet et al. 2001; Johansson et al. 2004; Tosh et al. 2004; Demirbas 2005; Lambo et al. 2005; McCleary 2006) but also physical methods (centrifugation-dialysis filtration) (Lambo et al. 2005) or extraction using NaOH (Bhatt 1995). The detection of β-glucans is carried out via HPLC (Pérez-Vendrel et al. 1995) and HPEC-PAD (Johansson et al. 2004), or via spectrophotometry in the UV (Demirbas 2005) and IR spectral regions (PN 01/01 Fungal glucan, 2001), respectively.

Physiological effects of cereal β-glucans

The influence of oat and barley β-glucans on the animal organism has a multifunctional character. Phagocytosis stimulation experiments showed that
β-glucans are important agents for the maintenance of some blood biochemical parameters. They are responsible for decreasing total and LDL-cholesterol, the ratio of total to HDL-cholesterol (Uusitupa et al. 1992; Asp et al. 1993; Behall 1997; Behall et al. 1997; Bell et al. 1999; Karla & Jood, 2000; Freiburger & Gallamer 2001; Kerckhoffs et al. 2003; Naumann et al. 2006; Queenan et al. 2007; Kapur et al. 2008; Ruxton & Derbyshire 2008; Cui et al. 2009), and so they may reduce the risk of coronary and ischemic heart diseases (Maki et al. 2007). This property may result from the ability to increase the viscosity of the intestinal content (Mälkki 2004; Butt et al. 2008). The recommended amount of fibre needed to affect cholesterol levels in humans is about 3 g a day, to be taken as four

Table 1. Content of β-glucans in cereals according to literature data

<table>
<thead>
<tr>
<th>Cereals</th>
<th>β-glucans (g/100g dry wt)</th>
<th>Method of determination</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oats</td>
<td>10.9–1.0 b</td>
<td>enzymic</td>
<td>Lambo et al. (2005)</td>
</tr>
<tr>
<td></td>
<td>4.0 ± 0.1 a</td>
<td>enzymic + HPAEC-PAD</td>
<td>Johansson et al. (2004)</td>
</tr>
<tr>
<td></td>
<td>4.1 ± 0.19 a</td>
<td>enzymic</td>
<td>Genç et al. (2001)</td>
</tr>
<tr>
<td></td>
<td>10.37 b</td>
<td>enzymic</td>
<td>Dongowski et al. (2003)</td>
</tr>
<tr>
<td></td>
<td>8.5 b</td>
<td>alkaline extraction</td>
<td>Bhatti (1995)</td>
</tr>
<tr>
<td></td>
<td>4.0 b</td>
<td>enzymic</td>
<td>Virkki et al. (2005)</td>
</tr>
<tr>
<td></td>
<td>3–5 b</td>
<td>–</td>
<td>Anttila et al. (2004)</td>
</tr>
<tr>
<td></td>
<td>2.47–3.45 b</td>
<td>enzymic</td>
<td>Weightman et al. (2004)</td>
</tr>
<tr>
<td></td>
<td>1.73–5.7 a</td>
<td>enzymic</td>
<td>Havrlentová and Kraic (2006)</td>
</tr>
<tr>
<td></td>
<td>13.79–33.73 b</td>
<td>enzymatic-gravimetric</td>
<td>Gaidošová (2007)</td>
</tr>
<tr>
<td>Barley</td>
<td>2.41–8.25 a</td>
<td>enzymic</td>
<td>Holtekjølen et al. (2006)</td>
</tr>
<tr>
<td></td>
<td>6.0–8.0 a</td>
<td>enzymic</td>
<td>Lambo et al. (2005)</td>
</tr>
<tr>
<td></td>
<td>3.7 ± 0.1 b</td>
<td>enzymic + HPAEC-PAD</td>
<td>Johansson et al. (2004)</td>
</tr>
<tr>
<td></td>
<td>3.6 ± 0.1 a</td>
<td>enzymic</td>
<td>Genç et al. (2001)</td>
</tr>
<tr>
<td></td>
<td>15.4 b</td>
<td>alkaline extraction</td>
<td>Bhatti (1995)</td>
</tr>
<tr>
<td></td>
<td>3.7 a</td>
<td>enzymic</td>
<td>Virkki et al. (2005)</td>
</tr>
<tr>
<td></td>
<td>3.91–4.95 a</td>
<td>enzymic</td>
<td>Zhang et al. (2001)</td>
</tr>
<tr>
<td>Wheat</td>
<td>0.8 ± 0.3 a</td>
<td>enzymic</td>
<td>Genç et al. (2001); Grausgruber et al. (2004)</td>
</tr>
<tr>
<td></td>
<td>0.31–0.9 a</td>
<td>enzymic</td>
<td>Grausgruber et al. (2004)</td>
</tr>
<tr>
<td></td>
<td>0.19–0.67 a</td>
<td>enzymic</td>
<td>Havrlentová and Kraic (2006)</td>
</tr>
<tr>
<td>Rye</td>
<td>1.20–2.90 a</td>
<td>enzymic</td>
<td>Genç et al. (2001)</td>
</tr>
<tr>
<td></td>
<td>2.26 a</td>
<td>enzymatic-gravimetric</td>
<td>Gaidošová (2007)</td>
</tr>
<tr>
<td></td>
<td>3.0–6.9 b</td>
<td>enzymic + HPAEC-PAD</td>
<td>Roubroeks et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>7.45 b</td>
<td>enzymatic-gravimetric</td>
<td>Gaidošová (2007)</td>
</tr>
<tr>
<td></td>
<td>2.21 a</td>
<td>enzymic</td>
<td>Grausgruber et al. (2004)</td>
</tr>
<tr>
<td>Buckwheat</td>
<td>0.02–0.15 a</td>
<td>enzymic</td>
<td>Havrlentová (unpublished data)</td>
</tr>
<tr>
<td>Amaranth</td>
<td>0.03–0.11 a</td>
<td>enzymic</td>
<td>Havrlentová (unpublished data)</td>
</tr>
<tr>
<td>Millet</td>
<td>0.01–0.11 a</td>
<td>enzymic</td>
<td>Havrlentová (unpublished data)</td>
</tr>
</tbody>
</table>

*soluble β-glucan, btotal β-glucan; HPAEC-PAD – high performance anion exchange chromatography with pulsed amperometric detection
3.35–3.74

0.39 Gajdošová

0.42 Gajdošová

3.95 Gajdošová

5.28 Gajdošová

Reference

7.48

1.38 Gajdošová

2.64–4.6 Havrlentová

2.66 Gajdošová

Cheol-Heui tolerance is normal.

No significant changes in the cholesterol levels after the fibre diet.

β-glucans show also positive cardio- (Keogh et al. 2003; Stephens 2005) and subsequently glycaemic reactions (Cavallero et al. 2002; Tappy 2006; Alminger & Eklund-Jonsson 2008; Nazare et al. 2009) beneficial for the overweight humans and patients with type 2 diabetes (Kim et al. 2009). The decrease in glucose content can be reached by 10% concentration of oat β-glucans in dairy products (Granfeldt et al. 2008; Kim et al. 2009). On the other hand, reports of Lovergrove et al. (2000), Juntunen et al. (2002), and Li et al. (2003) show that barley, oats, etc. do not have any significant effects on the blood sugar in people whose glucose tolerance is normal.

There has been little randomised research on whether β-glucans are effective against infection. Cheol-Heui et al. (2003) studied the effect of β-glucans extracted from oats on the increase of resistance to infections caused by Staphylococcus aureus and Eimeria vermiformis in mice. The in vitro study in which macrophages isolated from the peritoneal cavity were used showed that the administration of β-glucans considerably increased the activity of phagocytes. Furthermore, the in vivo study on mice showed that the administration of β-glucans led to a significant protection against S. aureus bacteria. Oral or parenteral administration of β-glucans significantly increased the resistance to infections caused by S. aureus or E. vermiformis in mice.

Further, β-glucans are potent inducers of humoral and cell-mediated immunity, and their regular daily consumption significantly increases the immunological activity (Estrada et al. 1997). In vitro addition of oat β-glucans to cultivated macrophages increases the production of interleukin IL-1 and tumor-necrosis factor TNF-α. The authors reported that an intraperitoneal administration of β-glucans to mice increased both the number and activity of peritoneal macrophages.

As active compounds of the soluble dietary fibre, β-glucans have an important role in gut physiology. The probiotic effect of cereal β-glucans was studied in the work of Vasiljevic et al. (2007). The diets treated with β-glucans significantly reduced the body weight in model mice organism (Bae et al. 2009). However, in another study, no significant effect on the weight was observed in 68 hyperlipidemic patients given a high β-glucan diet in comparison with a control group (Jenkins et al. 2002). It is also documented that oat β-glucans may be a potential adjunct to the prevention of colonic diseases, ulcerative colitis, and colon cancer (Nilsson et al. 2008; for review see Kim et al. 2006). Oatmeal whole grain, high fibre, and protein attributes are believed to be the primary factors influencing the spatial memory performance of children (Samuel 2002).

A large number of experimental investigations aimed at testing barley and oat β-glucans were conducted from the aspect of health benefit.
Utilisation of cereal β-glucans in the industrial practice

The physical and physiological properties of cereal β-glucans are of commercial and nutritional importance (Mälkki & Virtanen 2001; for review see Vasanthan & Temelli 2008). The increasing interest during the last two decades has been largely due to their acceptance as functional, bio-active ingredients (Cui & Wood 2000). Lately, consumers have shown increased interest in the purchasing and consuming such products, which are considered to be healthier. The foods with higher concentrations of complex saccharides and fibrous material, for example, are becoming more and more popular. This category involves also cereal-based products with a certain potential for the production of quick meals, cereal breakfasts, pasta, tortillas, puddings, oat yogurts, and yogurt milks (Brennan & Cleary 2005). OatLife (concentrated β-glucan made from oat bran) was the crucial ingredient in Primaliv, yoghurt and muesli combination, the first foodstuff labelled as “functional food” according to the new rules in Sweden.

Thanks to the excellent rheological properties related to the high viscosity of β-glucans at relatively low concentrations (Butt et al. 2008) can this polysaccharide be applied as a food ingredient in the form of hydrocolloids (Lazaridou et al. 2004; Lee et al. 2009) or as powder using microparticulation (Hunter et al. 2002). The incorporation of β-glucans into various products (baking products, muffins and cakes, pasta, noodles, muesli cereals, milk products, soups, salad dressings, beverages, reduced-fat dairy, and meat products) showed that the attributes, such as breading performance, water binding and emulsion stabilising capacity (Kalinga & Mishra 2009), thickening ability, texture, and appearance appear to be related to the concentration, molecular weight, and structure of the polysaccharide (Lazaridou & Biladeris 2007; Tiwari & Cummins 2009). Besides enhancing the nutritional value, β-glucans also improve the sensoric and gustatory properties of the final product (Gajdošová et al. 2007), for example of beverages (Lyly et al. 2003), where the expansion in the functional drink sector has been tremendous over the last few years (Sloan 2002). C-Trim-20 and C-Trim-30 with 20% and 30% of oat β-glucans, respectively, in 10–30% amounts are successfully used as thickening agents regulating the structural and taste properties of functional food products (Kalinga & Mishra 2009; Lee et al. 2009) in the development of calorie-reduced foods (Inglett 2000).

In the food industry can β-glucans be used also for the purpose of impermeable coating on the food product surface. Current research confirms the application of the fibre sources as crystallic and recrystallic regulator in frozen milk products (Soukoulis et al. 2009).

Cereal breakfast

Oats are frequently used as an additive in the preparation of various cereal products and delicacies. Cereal preparations for breakfast, or various cereal delicacies with fruit flavour as well as the products with coffee, cocoa, and chocolate flavour in the shape of flakes have already experienced a great success on the market. The decrease of the water activity is known to prolong the durability of foods. This principle is employed also in the production of cereal products from oats.

Lehrack and Volk (1999) described new possibilities of the thermal processing of cereals and cereal products by means of the microwave technology, warm air, and pressing in rice, wheat bran, and oat flakes processing. The microwave technology provides products with a relatively low reduction of the nutritional value and minimises the colour reactions typical for the pre-boiled rice.

Tested was also the addition of oat β-glucans with the aim to stabilise Lactobacillus rhamnosus cells in chocolate breakfast flakes. The effect of the polysaccharide led to the cell stability higher by 20°C (Saarela et al. 2006).

Baking products (bread, baked goods, dough)

Using the enzymatic and gravimetric methods, Plaami and Kumpulainen (1994) monitored the concentrations of soluble and insoluble dietary fibre materials in 128 samples, which represented twelve various kinds of bread, rusks (local as well as imported), and dough. The highest concentration of total dietary fibre (totally, soluble, and insoluble) was detected in rusks. Very high levels of fibres were monitored in the bread sample produced from rye flour, also in potato bread, oat-flour bread, brown dough produced from the durum wheat, and in the four-cereal dough prepared from
the durum wheat, oats, rye, and rice (Plaami & Kumpulanen 1994).

A research team from Ireland observed the influence of the addition of commercial oat-flour and oat-flake preparations on the quality of brown and white fermented bread. Control flours were produced from wholemeal and fine wheat flours. As a substitution for the fine wheat flour, oat flour in the amount of 2%, 4%, 6%, 8%, and 10% was added into the samples tested. The optimum amount needed for the brown bread quality, which was improved not only in the crust colour and bread softness but also in the taste itself, was achieved by adding 10% of oat flour (Gormley & Morrissey 1999). The addition influenced positively not only the sensoric properties and stronger taste but also the structure and health benefit of the final product (Flander et al. 2007; Škrbic et al. 2009).

The current study shows a positive effect of oat β-glucan on the sensoric properties of oat biscuits. The addition of hydrocolloids Nutrim O-B (10% of β-glucan) and C-Trim-20 (20% of β-glucan) increases the taste, adhesiveness, and moisture content (Lee et al. 2009).

The purpose of the latest co-operation established between the American and Thai scientists was to employ the oat component called Nutrim-5 in the prolongation of durability of rice flour in the Asian pasta. Nutrim-5 is one of the preparations of β-glucans in the form of a hydrocolloid, which is produced by treating the oat grain or flour using a thermal process. The rheological properties of the dough flour indicate that Nutrim-5 contributes to the overall strength of the material. 20 kg of pasta from the rice and wheat flours mixture together with Nutrim-5, salt, and eggs were prepared. The results showed that the optimal amount of Nutrim-5 was 10% of the total pasta weight; with neither the quality nor the sensory properties being negatively affected when comparing it to the pasta without β-glucans addition (Inglett et al. 2005).

Milk products

Oats are also known as additives used in the production of yogurts with increased amounts of fibre. The presence of 1–2% of the fibre results in an increased production of acetic and propionic acids during fermentation. Moreover, the fibre addition increased the solidity ratio and texture of unsweetened yogurts, but these parameters were decreased in sweetened yogurts (Fernandez-Garcia et al. 1998). Seven kinds of yogurts were tested. The addition of the fibre caused accelerated acidification in the experimental group and the majority of the enriched yogurts showed increased viscosity. Also, cereal flavour was observed (Fernández-García & McGregor 1997).

In 2002 in Sweden, the yogurt Primaliv was approved as the first Swedish functional food. This type of yogurt containing “muesli” and the oat fibre affects the balanced sugar level in blood, the low insulin reaction after meals, and the reduction of cholesterol. Clinical tests confirmed that the group of healthy people consuming Primaliv as a part of their diet had the blood sugar and insulin levels lower by 36% and 44%, respectively, when compared with the reference group (Skänemejerier’s 2002).

Konuklar et al. (2004) studied the structural properties of 3-month-old low-fat Cheddar cheeses produced with a β-glucans hydrocolloid component named Nutrim (nutraceutic substitution of fat) using instrumental methods and sensory evaluation. Using the detection methods, the texture (fragility, coherence, and elasticity) and melting point were measured. The studied sensory features involved odour, and taste and texture estimated by a 15-member commission of experienced assessors providing the results of these tests. Low-fat control cheeses (fat content of 11.2%) were compared with the Nutrim-I (6.8% of fat) and Nutrim-II (3.47% of fat) cheeses. The results showed that the elasticity and coherence values were the same for all cheeses. The majority of the sensory features were similar, the low-fat control cheeses being less bitter, more butter-like and creamy, and also less starchy than the Nutrim cheeses. In general, it can be concluded that a significant substitution of fat by Nutrim component resulted in softer Cheddar cheeses characterised by decreased melting time and lowered sensory properties.

Volikalisis et al. (2004) determined the influence of oat β-glucans concentrate on the chemical, physicochemical, and sensory properties of white low-fat cheese products in the salt brine. The white low-fat cheeses in the salt brine were produced by the traditional procedure from cow milk (70% reduction of fat) containing two levels of oat β-glucans concentrate (0.7% and 1.4% w/w). As references, full-fat and low-fat products without the addition of β-glucans concentrate were investigated. HPLC analysis revealed that the addition of β-glucans concentrate into milk led to a remarkable increase of the production of lactic, acetic, and butyric acids.
during the cheese curing. In the hydrocolloid enriched samples, the extent of proteolysis was significantly increased when compared to the control samples, especially on day 60 and 90. With respect to the rheological properties of the cheeses, the incorporation of β-glucans concentrate resulted in the improvement of all parameters of the low-fat products texture in comparison with the results obtained by both the large-scale deformation mechanical analysis and sensory analysis; remarkable correlations (P < 0.01) were found between the instrumental and sensory parameters for the “rigidity” descriptor. However, the addition of the preparation unfavourably affected the appearance, taste, and odour of cheeses when compared with the control samples (Volikalis et al. 2004).

The probiotic effect of cereal β-glucans has also been studied. The polysaccharide selectively supports the growth of Lactobacilli and Bifidobacteria, which are antagonists of many pathogenic bacteria in the digestive system (Charalampopoulos et al. 2002; Lambo et al. 2005). In probiotic drinks, the addition of oat β-glucans increases the health benefit and also the stability of the drink (Angelov et al. 2006). The amount of fibre did not change.

Meat products

Oat fibre is one of the most effective ingredients in the cooked low-fat meat products with the ability to mimic fat characteristics. The beef burgers were tested for the cooking yield, water-holding capacity, retention of shape, sensory, and mechanical texture. The study shows that this ingredient can be used to offset the poor quality associated with low-fat beef burgers (Troy et al. 1999). The addition of oat fibre improves the taste and total quality of the final food products (Desmond et al. 1998). The influence of oat fibre addition into sausages as a substitution for fats and sugars was also studied. Different fibre concentrations influenced differently the hydration-binding properties, colour, and taste characteristics of sausages. By decreasing the content of fat from 30% to 5%, the losses occurring during boiling considerably increased, the emulsion stability decreased, and the sensory quality of the products deteriorated. The products with the decreased content of fat were darker and more reddish in comparison with the control. The results have shown that the addition of oat fibre into sausages can partially compensate for the taste changes that occur in the low-fat sausages where fat is substituted with bound water (Hughes et al. 1997).

Other products (desserts, sauces, drinks)

Different forms of oats may be used as alternatives to the oat flour, for example pressed oat grains, partially milled oats, or oat porridge. Their fractions rich in the soluble fibre, including wholemeal oat flour and oat porridge, provide very smooth and relatively “dry” texture of the dessert; whereas the application of the above-mentioned flour with a higher content of starch gives a sweeter resulting effect. With the steady enzyme concentration, the sweetness of the product can be regulated by the duration of the saccharification process. When reaching the desired sweetness, the syrup is cooled to approximately 10°C. Then it can be flavoured with various admixtures such as vanilla, cocoa, chocolate, etc., or the milk or cream flavour may be added making the dessert more like an ice cream. After adding the flavours, the product is deep-frozen. Besides the already mentioned parameters, the product is also characterised by good viscosity, which results from the contents of fibre and gums in the starch sources. The product texture depends on the content of β-glucans. Thus β-glucans serve as stabilisers and texture agents; and the final product gives results comparable to ice-cream, frozen yogurts, and other similar frozen desserts (Whalen & Maxwell 1998).

Oats can serve as a substitute for soya in the production of flavouring sauces similar to the soya sauce. Weeded and soaked oat grains are processed and mixed with salt water containing NaCl in the concentration of 7–8% and subjected to a multi-step fermentation. This fermentation implies the hydrolytic process of milk and ethanol fermentation exploiting microorganisms Aspergillus oryzae or Aspergillus soyaee (for the production of “kojic” products), the osmotolerant strain of lactococci Pediococcus halophilus or the yeast Zygosaccharomyces rouxii during the fermentation phase. The fermentation proceeds in several steps at temperatures gradually decreasing from 40–45°C. The result of this process is a flavouring sauce similar to soya sauce which, however, is of lighter colour, is not so spicy, and is more neutral and delicious. The total taste is better adapted to the Western trend, which is characterised by less salty and spicy meals than are those from the Eastern kitchen. Another advantage is the shortening
of the whole process to a time period shorter than 3 months (Muller et al. 1995).

The application of the nettle extract and oats as additives into food products and products of the pharmaceutical industry described by Kovacs (1989) is also of great interest. The admixtures containing the nettle extract and oat products serve as additives to the fruit juices and drinks and increase the nutrition value of these products. Similarly, in the pharmaceutical industry the oat products are processed into the forms of dried mixtures, tablets, capsules, and gels, giving the drug another positive effect besides the antibiotic or chemotherapeutic effects (Morgan & Ofman 1998).

Future trends

Some food components can help to protect individuals against mainly coronary heart diseases, which increased the public awareness and demand for functional admixtures. For this reason, European consumer prefers foods which are natural, nutritive, safe, and visually attractive and which display the properties strengthening human health. These trends present a challenge to the food researchers whose task is to develop and identify the sources of raw foods with properties increasing the level of health-improving ingredients. Cereals (such as barley and oats) are good sources for functional ingredients and various studies have confirmed their potential nutritional benefits. One of the active substances which, according to the results of the recent research, shows immunomodulating and glucan-associated effects is the cereal β-glucans. This review has focused on various possibilities of exploitation of cereal β-glucans as important functional ingredients for the development of new cereal products in food industry.

References

The addition of at fiber and natural alternative contents of the barley grain for direct food use. Plant Soil and Environment, 49: 443–450.

Saarela M., Virkajärvi I., Nohynek L., Vaari A., Mätö J. (2006): Fibres as carriers for Lactobacillus rhamnosus during freeze-drying and storage in apple juice and

Received for publication July 22, 2009
Accepted after corrections June 22, 2010

Corresponding author:
RNDr. Michaela Havrlentová, Ph.D., Výskumný ústav rastlinnej výroby CVRV, Bratislavská cesta 122, SK 921 68 Piesťany, Slovak Republic
tel.: + 421 33 772 23 11, e-mail: havrlentova@vurv.sk