Mycobacterium tuberculosis in animal and human populations in six Central European countries during 1990–1999

I. Pavlik¹, W. Yayo Ayele¹, I. Parmova², I. Melicharek³, M. Hanzlikova³, M. Svejnochova⁴, B. Kőrmendy⁵, G. Nagy⁵, Z. Cvetnic⁶, V. Katalinic-Jankovic⁷, M. Ocepek⁸, M. Zolnir-Dove⁹, M. Lipiec¹⁰, M. Havelkova¹¹

¹Veterinary Research Institute, Brno, Czech Republic, e-mail: pavlik@vri.cz
²State Veterinary Diagnostic Institute, Prague, Czech Republic, e-mail: ilona.parmova@svupraha.cz
³State Veterinary Diagnostic Institute, Nitra, Slovakia, e-mail: tbc@svunitra.sk
⁴National Institute of Tuberculosis and Respiratory Diseases, Bratislava, Slovak Republic, e-mail: svejnochova@naturch.sk
⁵Central Veterinary Institute, Budapest, Hungary, e-mail: ngyorgy@oai.hu
⁶Croatian Veterinary Institute, Zagreb, Croatia, e-mail: zeljko.cvetnic@veinst.hr
⁷Croatian National Institute of Public Health, Zagreb, Croatia, e-mail: hzzjz-tbc@zg.tel.hr
⁸University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia, e-mail: manca.zolnir@klinika-golnik.si
⁹Veterinary Faculty, University of Ljubljana, Slovenia, e-mail: matjaz.ocepek@vf.uni-lj.si
¹⁰National Veterinary Research Institute, Pulawy, Poland, e-mail: mlipiec@piwet.pulawy.pl
¹¹National Institute of Public Health, Prague, Czech Republic, e-mail: mhavelkova@szu.cz

ABSTRACT: Results of *Mycobacterium tuberculosis* detection in animals from six Central European countries (Croatia, the Czech Republic, Hungary, Poland, Slovakia and Slovenia) spreading over 610,402 km² with a population of 11.8 million heads of cattle were analysed. In the monitoring period, 1990 to 1999, *M. tuberculosis* from animals was isolated only in two countries (Poland and Slovak Republic) from 16 animals with tuberculous lesions. These comprise nine heads of cattle (*Bos taurus*), four domestic pigs (*Sus scrofa f. domestica*) and three wild animals, an African elephant (*Loxodonta africana*), agouti (*Dasyprocta aguti*) and terrestrial tapir (*Tapirus terrestris*), originated from a zoological garden Gdansk in Poland. Steady decrease in the incidence of tuberculosis in humans was recorded during the monitoring period in all countries. The human population of the study countries was 68.03 million. In the period monitored, infection caused by *M. tuberculosis* was identified in a total of 241,040 patients with a decreasing incidence of tuberculosis found in all countries. The lowest relative bacteriologically confirmed disease was found in the Czech Republic, Slovak Republic and Slovenia. Given the low number of infected domestic and wild animals, the epidemiological and epizootiological situation may be considered auspicious.

Keywords: *Mycobacterium bovis*; human tuberculosis; risk assessment

In the majority the Central European countries, the incidence of bovine tuberculosis in animals was auspicious during the last decades (Thoen and Steele, 1995). The prevalence and incidence of *Mycobacterium bovis* in cattle in these countries was nearly zero (Pavlik et al., 2002a,e). Similarly,

Partially supported by the EU, Brussels (Grant No. FAIR6-CT98-4373), National Agency for Agricultural Research (Grant No. QD1191), and the Ministry of Agriculture of the Czech Republic (Grant No. MZE-M03-99-01).
this promising epidemiological condition of the disease was observed in other domestic animals (Pavlik et al., 2002d). In wild animals, however, the infectious situation has developed differently in the last three decades depending on the conditions in which animals were living. In animals kept in captivity, mainly in zoological gardens, the incidence and prevalence of M. bovis decreased gradually (Pavlik et al., 1998). The epidemiological situation of animals in wild has been unknown for a long time as a result of insufficient analysis of the population. In farmed deer bovine tuberculosis occurs only sporadically (Pavlik et al., 2002b,d).

In wild animals kept on farms, e.g. red deer (Cervus elaphus), M. bovis was detected when bovine tuberculosis had already been controlled in domestic animals and animals kept in zoological gardens. In the Czech Republic, for example an incidence of bovine tuberculosis has been recorded in one deer farm in 1999 (Pavlik et al., 2002b,d). In the rest of the study countries, however M. bovis was identified on several farms (Pavlik et al., 2002d). The infectious situation in the wild in most central European countries is unknown because, apart from the Czech Republic, no monitoring of the occurrence of bovine tuberculosis in wild animals has been conducted as yet. Nevertheless, M. bovis has been identified in animals living in the wild during the past two decades in the wild pig (Sus scrofa ferus) in Bosnia and Herzegovina, Hungary, Croatia and Slovakia (Ivetic and Sudaric, 1987; Hanzlikova and Vilimek, 1992; Kalensky, 1992; Pavlik et al., 2002d; Machackova et al., 2003).

Of other wild animals, M. bovis has been identified from the European bison (Bison bonasus) in Poland, which most probably were infected from an infected cattle kept on pasture (Zorawski and Lipiec, 1997, 1998; Pavlik et al., 2002d). In the Czech Republic M. bovis was isolated from the red deer living in the wild in 1991 (Pavlik et al., 1998, 2002d). On the basis of the genomic DNA analysis of M. bovis isolates in the Czech Republic and Slovak Republic, a unique spoligotype was observed. This isolate was a unique spoligotype as compared with the results of more than 3 000 other M. bovis isolates examined using the same method, which are in the RIVM database in Netherlands, coming from Europe and other continents (Pavlik et al., 2002b). From these results it can be inferred that as yet unidentified reservoirs of M. bovis may evidently exist in the wild.

However, M. tuberculosis (one of the M. tuberculosis complex organism) was also isolated from organs with tuberculous lesions in domestic and wild animals. For example, in Norway between 1970 and 1975, M. tuberculosis was isolated from 3 (0.1%) of 3 004 pigs examined (Flesja et al., 1978). In England over 16 years (1953–1968) M. tuberculosis was isolated from 67 (10.7%) of 626 pigs and from 13 (0.09%) of 14 439 head of cattle examined (Lesslie and Birn, 1970). In the USA Thoen et al. (1981) identified M. tuberculosis in one (0.01%) animal between 1973 and 1977 while examining 7 007 heads of cattle. In 474 exotic animals, M. tuberculosis was identified in 29 (6.1%) non-human primates and wild ruminants. The highest positive cases were detected while examining 135 non-human primates of which M. tuberculosis was identified in 21 (15.6%). In contrast, M. tuberculosis was not identified during the examination of 2 036 domestic pigs.

In the Federal Republic of Germany M. tuberculosis was isolated between 1961 and 1970 in two (0.2%) of 1 135 head of cattle and in 10 (0.49%) of 2 055 pigs (Schliesser, 1976). In Slovakia M. tuberculosis was isolated in 1970 in 1 (0.18%) of 553 head of cattle (Pavlik et al., 1974). In the Czech Republic M. tuberculosis was isolated in 1984 from the tuberculosis-changed lungs of one old dog whose owner was treated for lung tuberculosis caused by the M. tuberculosis (Cada, 1994; Stika, 1994). The M. tuberculosis infection was also identified in dogs in Slovakia at the beginning of eradication programme against bovine tuberculosis (Cada, 1962).

The source of M. tuberculosis is most frequently considered to be a human being with tuberculosis, expelling the causal agent of human tuberculosis via sputum, less often through urine or faeces (Thoen and Steele, 1995; Grange, 1996). In Slovakia M. tuberculosis was isolated from stream water into which waste water flowed without adequate disinfection (Laktis et al., 1970). Water supplies for animals contaminated in this way could also under certain circumstances become a source of infection either in barn or pasture.

In evaluating the results of examination of the presence of M. tuberculosis on the territory of some countries of Central Europe between 1990 and 1999, the question therefore arises as to what was the source of M. tuberculosis in domestic and wild animals.
MATERIAL AND METHODS

The characteristics of the territory in the countries monitored

The study was conducted on the territory of six countries of Central Europe (Croatia, Czech Republic, Hungary, Poland, Slovakia and Slovenia) lying between the Baltic and the Adriatic seas and covering an area of 610 402 km². According to data from the WHO (http://who.int) in 1995, more than 68 million inhabitants lived on the territory of these six countries. Until 1995, a total of 11.88 million heads of cattle have been kept in this area, of which more than 5.9 million were cows (FAO-OIE-WHO, 1997; Table 1).

The source of statistical data about the frequency of \textit{M. tuberculosis} in human beings and animals

Data about the frequency of \textit{M. tuberculosis} were obtained for the whole period between 1990 and 1999 from the relevant National Reference Laboratories. The tuberculosis-changed tissue of animals was examined for the presence of mycobacteria, which were identified as \textit{M. tuberculosis} by biochemical tests and through biological experiment on guinea pigs (Wayne and Kubica, 1986).

RESULTS

The occurrence of \textit{M. tuberculosis} in human beings in the years 1990 to 1999

In the period monitored bacteriologically confirmed tuberculosis caused by \textit{M. tuberculosis} was identified in a total of 241 040 patients. In the period monitored, a decreasing frequency of tuberculosis was found in all countries. The lowest relative rate of bacteriologically confirmed cases of \textit{M. tuberculosis} was found in the Czech Republic, Slovakia and Slovenia (Table 2).

The occurrence of \textit{M. tuberculosis} in animals in the years 1990 to 1999

In the years 1990 to 1999, \textit{M. tuberculosis} was isolated from the tuberculous lesions of 16 animals of 5 species in only two of the six countries monitored (Table 3).

The occurrence of \textit{M. tuberculosis} in domestic animals in the years 1990 to 1999

In Poland \textit{M. tuberculosis} was isolated from 9 heads of 9 cattle herds and from one domestic pig (Table 3). Each head of infected cattle originated

Table 1. Geographic, demographic and agricultural data about countries studied*

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of inhabitants (mil.)</th>
<th>km²</th>
<th>Number of cattle (mil.)</th>
<th>cows (mil.)</th>
<th>herds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Croatia</td>
<td>4.505</td>
<td>56 538</td>
<td>0.493</td>
<td>0.330</td>
<td>nk</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>10.330</td>
<td>78 864</td>
<td>2.030</td>
<td>0.830</td>
<td>5 410</td>
</tr>
<tr>
<td>Hungary</td>
<td>10.160</td>
<td>93 031</td>
<td>0.910</td>
<td>0.420</td>
<td>50 936</td>
</tr>
<tr>
<td>Poland</td>
<td>35.735</td>
<td>312 683</td>
<td>7.937</td>
<td>3.763</td>
<td>1 373 500</td>
</tr>
<tr>
<td>Slovakia</td>
<td>5.350</td>
<td>49 035</td>
<td>0.916</td>
<td>0.348</td>
<td>1 369</td>
</tr>
<tr>
<td>Slovenia</td>
<td>1.950</td>
<td>20 251</td>
<td>0.504</td>
<td>0.210</td>
<td>nk</td>
</tr>
<tr>
<td>Total</td>
<td>68.030</td>
<td>610 402</td>
<td>11.880</td>
<td>5.901</td>
<td>nk</td>
</tr>
</tbody>
</table>

Explanations:
*Source of the data: WHO (http://who.int), Surveillance of Tuberculosis in Europe (http://www.ceses.org/euroth/eurotb.htm) and OIE (FAO-OIE-WHO, 1997) from 1995
nk = not known
Table 2. Bacteriologically confirmed cases of *M. tuberculosis* infection in human population during 1990–1999

<table>
<thead>
<tr>
<th>Year</th>
<th>Croatia</th>
<th>Czech Republic</th>
<th>Hungary</th>
<th>Poland</th>
<th>Slovakia</th>
<th>Slovenia</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>abs.</td>
<td>rel.</td>
<td>abs.</td>
<td>rel.</td>
<td>abs.</td>
<td>rel.</td>
<td>abs.</td>
</tr>
<tr>
<td>1990</td>
<td>2 576</td>
<td>55.0</td>
<td>1 505</td>
<td>14.5</td>
<td>3 588</td>
<td>34.0</td>
<td>1 191</td>
</tr>
<tr>
<td>1991</td>
<td>2 158</td>
<td>45.0</td>
<td>1 549</td>
<td>14.9</td>
<td>3 568</td>
<td>35.0</td>
<td>1 197</td>
</tr>
<tr>
<td>1992</td>
<td>2 185</td>
<td>46.0</td>
<td>1 420</td>
<td>13.8</td>
<td>3 960</td>
<td>38.0</td>
<td>1 180</td>
</tr>
<tr>
<td>1993</td>
<td>2 279</td>
<td>48.0</td>
<td>1 222</td>
<td>11.8</td>
<td>4 209</td>
<td>41.0</td>
<td>1 139</td>
</tr>
<tr>
<td>1994</td>
<td>2 217</td>
<td>46.0</td>
<td>1 161</td>
<td>11.2</td>
<td>4 163</td>
<td>41.0</td>
<td>1 165</td>
</tr>
<tr>
<td>1995</td>
<td>2 114</td>
<td>44.0</td>
<td>1 188</td>
<td>11.5</td>
<td>4 339</td>
<td>42.0</td>
<td>961</td>
</tr>
<tr>
<td>1996</td>
<td>2 174</td>
<td>45.0</td>
<td>1 095</td>
<td>10.6</td>
<td>4 278</td>
<td>42.0</td>
<td>849</td>
</tr>
<tr>
<td>1997</td>
<td>2 054</td>
<td>43.0</td>
<td>1 047</td>
<td>10.2</td>
<td>4 148</td>
<td>41.0</td>
<td>783</td>
</tr>
<tr>
<td>1998</td>
<td>2 118</td>
<td>44.0</td>
<td>1 065</td>
<td>10.3</td>
<td>3 999</td>
<td>39.0</td>
<td>744</td>
</tr>
<tr>
<td>1999</td>
<td>1 770</td>
<td>37.0</td>
<td>990</td>
<td>9.6</td>
<td>3 912</td>
<td>39.0</td>
<td>651</td>
</tr>
<tr>
<td>Total</td>
<td>21 645</td>
<td></td>
<td>12 242</td>
<td></td>
<td>40 164</td>
<td></td>
<td>9 860</td>
</tr>
</tbody>
</table>

Explanations:
- abs. = absolute number of bacteriologically confirmed cases of *M. tuberculosis* infection
- rel. = relative number of bacteriologically confirmed cases of *M. tuberculosis* infection per 100 000 inhabitants

Table 3. *M. tuberculosis* infection in animals in six Central European countries

<table>
<thead>
<tr>
<th>Country</th>
<th>Year</th>
<th>Cattle</th>
<th>Swine</th>
<th>Elephant</th>
<th>Agouti</th>
<th>Tapir</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Croatia</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hungary</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Poland</td>
<td>1994</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td>0</td>
<td>1</td>
<td>1<sup>6</sup></td>
<td>1<sup>6</sup></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1<sup>6</sup></td>
<td>4</td>
</tr>
<tr>
<td>Slovakia</td>
<td>1994</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Slovenia</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>%</td>
<td>56.1</td>
<td>25.0</td>
<td>6.2</td>
<td>6.2</td>
<td>6.2</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Explanations:
- ¹cattle (*Bos taurus*) from a small cattle farm with less than 9 cows;
- ²domestic swine (*Sus scrofa f. domestica*);
- ³african elephant (*Loxodonta africana*);
- ⁴agouti (*Dasyprocta aguti*);
- ⁵tapir (*Tapirus terrestris*);
- ⁶zoological garden in Gdansk, Poland
from a different farm and in all cases these farms had less than 9 cows in a herd. The pigs also came from small farms in which feeding of pigs continued to a slaughter weight of 115 kg.

In Slovakia M. tuberculosis was isolated from three domestic pigs which came from three different farms with a size of 100 to 200 pigs fed to a slaughter weight of 115 kg.

The occurrence of M. tuberculosis in wild animals in the years 1990 to 1999

In Poland M. tuberculosis was isolated from three wild animals (Table 3): from one African elephant (Loxodonta africana), one agouti (Dasyprocta aguti) and one terrestrial tapir (Tapirus terrestris) in zoological garden in Gdansk in 1997 and 1999.

DISCUSSION

Even after the control of bovine tuberculosis in cattle and other species of domestic animals, tuberculous changes in the lymph nodes of pigs and cattle continued to be found during veterinary meat inspections in slaughterhouses (Pavlik et al., 2002c). However, particularly in pigs alterations are often caused by other mycobacterial species, of which the most frequently represented are M. avium complex isolates (Pavlik et al., 2000a, 2003). These and atypical mycobacteria have contaminated, for example, sawdust, drinking water or peat given as a food supplement (Pavlik et al., 1999, 2000b). Apart from the M. avium complex isolates and atypical mycobacteria, Rhodococcus equi has also been isolated from the tuberculous changed lymph nodes of cattle and pigs (Dvorska et al., 1999). On the basis of the results given in Table 2, one must, however, take into account the possible role of M. tuberculosis in any finding of tuberculous lesions in the lymph nodes of animals.

The infection of animals with M. tuberculosis also may complicate intravital diagnosis. During this study it was found that cattle naturally infected with M. tuberculosis reacted positively to skin test with bovine tuberculin (Andres, 1950; Hubrig, 1957; Pavlas and Rademachr, 1959; Krajsa, 1959; Pavlas et al., 1964; Pavlas and Mezensky, 1982). These discoveries in the field were later confirmed also in experimentally infected cattle (Pavlas, 1965).

From the epizootiological point of view it is important to know the risks represented by the source of M. tuberculosis for herds of animals. In zoological garden in Gdansk (Poland), M. tuberculosis was isolated from three animals. These animals were kept in different parts of the zoological garden, from which it can be judged that the possibility of mutual transmission of infection was minimal. As humans most frequently have tuberculosis caused by M. tuberculosis, they may act as the primary source of infection for animals in zoological gardens (Thoen and Steele, 1995). Domestic and wild animals kept in captivity are most frequently put at risk sick attendants or visitors who feed animals with food often contaminated with their saliva and nasal discharges. In this way animals kept for example in zoological gardens, national parks and other establishments are put at risk of M. tuberculosis infection not only from attendants, but also from visitors.

Patients with tuberculosis of the urogenital tracts may excrete M. tuberculosis through urine. Therefore it is appropriate in zoological gardens to restrict direct or indirect contact with visitors, for example by locating exhibits behind a glass barrier. In agricultural enterprises testing for human tuberculosis should be required especially workers from countries with high prevalence of human tuberculosis (Ukraine, Belarus and others). Domestic pets, mainly dogs and cats are highly exposed to human tuberculosis because of their close contact with humans.

Acknowledgement

Authors are indebted to Dr. David J. Kennedy (Australian Veterinary Animal Health Services Pty Ltd, Orange, Australia) for critical reading of the manuscript and A. Maslanova and Z. Gregorova from Veterinary Research Institute, Brno, for help with cited references.

REFERENCES

Cada F. (1994): Personal communication. State Veterinary Diagnostic Institute, Plzen, Czech Republic.

Stika V. (1994): Personal communication. State Veterinary Diagnostic Institute, Praha, Czech Republic.

Received: 02–08–02
Accepted after corrections: 03–04–16

Corresponding Author

Assoc. Prof. MVDr. Ivo Pavlik, CSc., Veterinary Research Institute, Hudcova 70, 621 32 Brno, Czech Republic
Tel. +420 541 321 241, fax +420 541 211 229, e-mail: pavlik@vri.cz, http://www.vri.cz/labs/tbc/default.ht