Serological survey of the wild boar (Sus scrofa) for tularemia and brucellosis in South Moravia, Czech Republic

Z. HUBÁLEK¹, F. TREML², Z. JUŘICOVÁ¹, M. HUŇADY³, J. HALOUZKA¹, V. JANÍK⁴, D. BILL⁴

¹Medical Zoology Laboratory, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
²Institute of Infectious Diseases and Epizootiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
³Bioveta a.s., Ivanovice na Hané, Czech Republic
⁴District Veterinary Service, Břeclav, Czech Republic

ABSTRACT: Sera of 204 wild boars (Sus scrofa), shot by hunters in the South-Moravian district of Břeclav during 1993-2001, were tested by microagglutination reaction using safranin-stained antigens of Francisella tularensis and Brucella abortus: 10.8% and 8.7% seroreactors, respectively, were detected. The highest (17%) prevalence of tularemia antibodies was found in wild boars during 1993–1994 at the beginning of a widespread outbreak of tularemia in South Moravia that started in 1994, a nonsignificantly lower (13%) seroprevalence in 1995–1996 during the continuing epizootic, whereas it decreased markedly to 3% in the years 1997–2001 during the disappearance of the epizootic. Brucella sp. antibodies were significantly most frequent (15%) in wild boars in the years 1995–1996. This Brucella seroreactivity has been attributed to B. suis biotype 2 (B. melitensis biovar Suis biotype 2 according to new nomenclature) infection, because B. abortus in both cattle and humans (Bang’s disease) was eradicated in the former Czechoslovakia in 1964. The hare brucellosis (B. suis biotype 2) has occurred in the Břeclav district in a number of natural foci revealing an increased activity since 1994.

Keywords: Francisella tularensis; Brucella melitensis biovar Suis; Brucella suis; Sus scrofa; wild boar; wild swine; wildlife; game animals; serosurvey; microagglutination test; complement fixation test; zoonoses; natural foci of diseases

Natural foci of tularemia and brucellosis (the etiologic agents are Francisella tularensis and Brucella suis biotype 2, respectively) have been detected during the autumn hunting of hares (Lepus europaeus) in the Břeclav district of South Moravia (Czech Republic) at different extent and intensity virtually every year since the 1960s (data of District Veterinary Service). However, while all shot hares in the district are examined routinely for these two zoonoses, the other species of game animals escape this screening. A limited testing of deer, moufflon and wild boar was done in 1990, and the seroprevalence for both tularemia and brucellosis was found to be up to 6% of the animals (Hubálek et al., 1993).

An increased activity of natural foci of tularemia was reported in southern Moravia and adjacent regions of Slovakia and Austria in autumn 1994 (Hubálek et al., 1996, 1997; Treml et al., 1997, 2001; Guryčová et al., 1999, 2001). After the isolation of F. tularensis from ixodid ticks and rodents, we decided to carry out a serosurvey of locally abundant wild boar (Sus scrofa), a potential host or reservoir of many zoonoses (Fenske and Pulst, 1973; Becker et al., 1978; Zygmont et al., 1982; Dedek et al., 1986; Robson et al., 1993; Edelhofer et al., 1996; Gibbs, 1997; Saliki et al., 1998; Deutz and Köfer, 1999; Heinritzi et al., 1999). In parallel, we tested the sera for antibodies against Brucella because

Supported by the Grant Agency of the Czech Republic (Grant No. 524/00/1122) and the Grant Agency Academy of Sciences of the Czech Republic (Grant No. S6093007).
of the agglutination cross-reactivity between the two microbial genera.

MATERIAL AND METHODS

Blood samples collection

Wild boars were killed by hunters in a number of localities in the district of Břeclav from 1993 to 2001. During the veterinary inspection of the shot animals, the blood samples were collected from the heart or thoracic cavity into plastic tubes and allowed to clot. The sera were then separated by centrifugation and stored at \(-20^\circ \text{C} \) until tested. Strongly haemolytic sera were discarded.

Microagglutination test (MAT)

Examination of sera for both tularaemia and brucellosis was carried out in plastic microplates with U-shaped wells, using slow agglutination reaction and commercial antigens of *Francisella tularensis* and *Brucella abortus* (Bioveta a.s., Ivanovice na Hané, Czech Republic) that were stained in our laboratory by safranin O at a final concentration of 0.005% (Brown et al., 1980). In each well, 25 µl of the stained antigen (*F. tularensis* or *B. abortus*), diluted five times with saline, was mixed with 25 µl of sera diluted serially two-fold with saline starting from 1 : 5. The controls included commercial immune sera against tularaemia and brucellosis (Bioveta): tularaemia serum titered against antigens of *F. tularensis* or *B. abortus* at 1 : 40 and <1 : 5, respectively, while brucella serum reacted against the same antigens at 1: 10 and 1: 320, respectively. The microplates were gently shaken, placed in an incubator at 37°C for 4 hours, and then at +4°C overnight for a final reading. Sera positive (with a typical agglutinate in a dilution of at least 1 : 10) in MAT were checked in a standard agglutination test (Francis and Evans, 1926) on WHO plates or in glass tubes, using 200-µl volumes of serum and unstained antigen *F. tularensis* or *B. abortus* (Bioveta).

Complement-fixation test (CFT)

Sera reacting with *B. abortus* in MAT were additionally examined with CFT in tubes according to the manufacturer's (Bioveta) instructions. The sera were first inactivated at 60°C for 30 min; however, a number of them coagulated and were unsuitable for the CFT procedure.

Statistical evaluation

Differences in antibody prevalence between various groups of animals were evaluated with the chi-square and Fisher exact tests, and coincidence in long-term prevalence between tularaemia and brucellosis in hares was tested with Pearson, Spearman and Kendall coefficients of correlation (Snedecor and Cochran, 1967). The differences and correlation values with the probability of the null hypothesis \(P < 0.05 \) were regarded as significant.

RESULTS

Of 204 wild boars examined in MAT, 22 animals (10.8%) reacted with *F. tularensis* (the titres varied between 1 : 10 to 1 : 40) while 18 animals (8.7%) with *B. abortus* (titres from 1 : 10 to 1 : 80; Table 1). Cross-reactions between tularaemia and brucellosis occurred

<table>
<thead>
<tr>
<th>Number of examined wild boars</th>
<th>F. tularensis MAT positive</th>
<th>B. abortus MAT positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>204</td>
<td>22 (10.8%)</td>
</tr>
<tr>
<td>Period: 1993–1994</td>
<td></td>
<td>6 (16.7%)</td>
</tr>
<tr>
<td>1995–1996</td>
<td>108</td>
<td>14 (13.0%)</td>
</tr>
<tr>
<td>1997–2001</td>
<td>60</td>
<td>2 (3.3%)</td>
</tr>
<tr>
<td>Age: ≤1 year</td>
<td>57</td>
<td>6 (10.5%)</td>
</tr>
<tr>
<td>1 year</td>
<td>78</td>
<td>10 (12.8%)</td>
</tr>
<tr>
<td>>1 year</td>
<td>36</td>
<td>6 (16.7%)</td>
</tr>
</tbody>
</table>
DISCUSSION

Sensitivity and specificity of MAT with stained antigen have been demonstrated to be comparable or superior to those of the standard tube agglutination test with unstained antigen (Francis and Evans, 1926) in both Francisella (Massey and Mangiafico, 1974; Brown et al., 1980; Sato et al., 1990) and Brucella (Bettelheim et al., 1983; Moyet et al., 1987; Rogers et al., 1989; Sato et al., 1990). We can confirm that MAT compared with the standard tube agglutination ‘macrotest’ is quicker, easier to perform, more economical (saving sera and antigens) as well as better readable when the sera are haemolytic.

Dedek et al. (1986) examined 1061 wild boars in Germany for antibodies against tularemia (0.1% were positive) and brucellosis (7.9% positive). A much higher seroprevalence to Brucella has recently been found in France: overall, 31.6% of 2313 wild boars were positive between 1994 and 2000 (Garin-Bastuji and Delcueillerie, 2001). The detection of antibodies to B. abortus in wild boars should be interpreted with care, taking into account cross-reactivity among Brucella, Francisella and Yersinia enterocolitica 0 : 9 (Mittal and Tizard, 1980). We did not test the sera against the latter microorganism due to inaccessibility of the antigen. Moreover, in respect to the well-known complete cross-agglutination reactivity of Brucella spp. (according to DNA hybridization the genus Brucella is, in fact, monospecific with the only species named B. melitensis involving five biovars – Abortus, Canis, Neotoma, Ovis, Suis: Verger et al., 1985) it is most probable that our results do not indicate the presence of B. abortus, the etiologic agent of Bang’s disease which was eradicated in the former Czechoslovakia in 1964, but that they demonstrate infection of wild boars with B. suis biotype 2 (according to new nomenclature B. melitensis biovar Suis, biotype 2), i.e. the agent of hare brucellosis which occurs in the Břeclav district (Štěrba, 1982; data of District Veterinary Service, Břeclav). Brucella abortus has not been isolated from either domestic or wild animals in the Czech Republic since the 1970s (data of the State Veterinary Service, Prague).

Brucella suis biotype 2 is distributed in many other European countries: Slovakia (Nižnánsky et al., 1957), Hungary (Kormendy and Nagy, 1982), Austria (Willinger, 1960; Damoser and Hofer, 1995; Höflechner-Pöltl et al., 2000), Germany (Dedek, 1983; Kautzsch et al., 1995; Heinritzi et al., 1999), Switzerland (Haer et al., 2001), France (Teysou et al., 1989; Garin-Bastuji and Delcueillerie, 2001), Belgium...
(Francart et al., 1983; Godfroid et al., 1994), Denmark (Thomsen, 1957, 1959; Thimm, 1982), Poland (Szulowska, 1999), Slovenia (Brglez and Batis, 1981), Yugoslavia (Thimm, 1982) and, after the introduction of European hares, even in Argentina (Szyfres et al. 1968). Two strains of B. suis biotype 2 were isolated from wild boars near Potsdam in Germany (Fenske and Pulst, 1973), and additional strains were recovered from this animal species in Bavaria (Heinritzi et al., 1999), Austrian Styria (Deutz and Kőfer, 1999), Belgium (Godfroid et al., 1994) and France (34 isolations between 1994 and 2000: Garin-Bastuji and Delcueillerie, 2001). On the other hand, B. suis biotype 1 predominates in feral swine in other parts of the world (Becker et al., 1978; Zygmunt et al., 1982; Corn et al., 1986; Robson et al., 1993; Gibbs, 1997).

The increased prevalence of Brucella antibodies in wild boars in the years 1995-1996 followed a markedly growing activity of hare brucellosis in the Břeclav district since 1994 (Table 3). Interestingly, brucellosis was diagnosed in domestic pigs monitored in the Czech Republic between 1992 and 2000 only in 1994 when 70 (0.05%) of 154,319 animals seroreacted, and 4 of 107 seropositive pigs also yielded Brucella sp. by cultivation (Kolbabová et al., 2001). In general, there was a considerable parallel in the incidence between brucellosis and tularemia in local hares from 1990 to 2000 (Table 3), with high correlation coefficient values (P < 0.001) of Pearson ρ = 0.934, Spearman q = 0.934 and Kendall τ = 0.807. Significant correlations were also found between the disease incidence in hares and the number of corresponding foci (Table 3) for both tularemia (r = 0.705; q = 0.650; τ = 0.509) and brucellosis (r = 0.628; q = 0.700; τ = 0.491). Pikula (1996) found that the numbers of natural foci in areas endemic for tularemia correlate with the population level of the European hare. We can therefore suppose that the growing incidence of both tularemia and hare brucellosis were associated with the increasing population density of hares (as revealed by the numbers of animals shot in the district between 1990 and 2000).

The wild boar is an omnivorous species that feeds even on carrion; some individuals could thus come into contact with infected dead hares or their aborted foetuses (Damoser and Hofer, 1995). Along with the hare, the wild boar is regarded as the natural reservoir of B. suis biotype 2 in Europe (Dedek, 1983; Wilhelm and Zeiris, 1985; Kautzsch et al., 1995; Szulowski, 1999; Szulowski and Piłaszek, 2000; Garin-Bastuji and Delcueillerie, 2001). This bacterium is pathogenic to the hare (Vítovec et al., 1976; Štěrba, 1982), wild boar and domestic pig (Nicolet et al., 1979; Köhler and Wille, 1980; Godfroid et al., 1994; Kautzsch et al., 1995; Heinritzi et al., 1999; Garin-Bastuji and Delcueillerie, 2001). Brucella suis, including biotype 2, has been reported with an increasing frequency as the causative agent of human disease (Chastel et al., 1970; Joubert et al., 1970; Golden et al., 1970; Heineman and Dziamski, 1976; Morris et al., 1979; Nadler et al., 1982; Thimm, 1982; Williams and Crossley, 1982; Francart et al., 1983; Teyssou et al., 1989; Bergeron et al., 1992; Robson et al., 1993; Kant et al., 1994; Paton et al., 2001; Kolbabová et al., 2001). We previously found Brucella antibodies in 5.2% of 524 adult women attending outpatient clinics and hospital in the Břeclav district in 1985-1986:

Table 3. Incidence of tularemia and brucellosis in the hunter-killed hare (Lepus europaeus): Břeclav district, 1990–2000. (Data from the District Veterinary Service Břeclav). [The figures in brackets show the number of foci in the district]

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of hares killed and examined</th>
<th>Positive for</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>tularemia</td>
</tr>
<tr>
<td>1990</td>
<td>7 398</td>
<td>0.61% [47]</td>
</tr>
<tr>
<td>1991</td>
<td>5 089</td>
<td>0.96% [52]</td>
</tr>
<tr>
<td>1992</td>
<td>7 264</td>
<td>0.77% [59]</td>
</tr>
<tr>
<td>1993</td>
<td>7 875</td>
<td>0.61% [49]</td>
</tr>
<tr>
<td>1994</td>
<td>14 024</td>
<td>5.75% [62]</td>
</tr>
<tr>
<td>1995</td>
<td>5 307</td>
<td>3.75% [57]</td>
</tr>
<tr>
<td>1996</td>
<td>5 402</td>
<td>2.28% [57]</td>
</tr>
<tr>
<td>1997</td>
<td>6 584</td>
<td>4.53% [59]</td>
</tr>
<tr>
<td>1998</td>
<td>6 829</td>
<td>3.44% [60]</td>
</tr>
<tr>
<td>1999</td>
<td>8 591</td>
<td>2.11% [61]</td>
</tr>
<tr>
<td>2000</td>
<td>11 842</td>
<td>3.36% [62]</td>
</tr>
</tbody>
</table>
one of these aborted, and another gave a premature birth to a baby with congenital malformation (microcephaly); because all other results of examination in these two women were negative, the symptoms might have been related to infection with *B. suis* biotype 2 (Hubálek et al., 1987).

Infection of wild boars with tularaemia (probably asymptomatic, but piglets are reported to be quite susceptible to the disease), might occur either by the oral route or via the vector, *Dermacentor reticulatus*. This tick species is distributed in certain habitats along the lower reaches of the rivers Dyje and Morava of the Břeclav district, their adult stages parasitize wild boars commonly, and the rate of tick infection with *F. tularensis* can be quite high during epizootics, 1% to 4% (Hubálek et al., 1996).

Acknowledgement

We are indebted to MVDr. J. Hnilička, the former Director of the District Veterinary Service Břeclav for the support, and to a number of hunters and veterinarians (MVDr. P. Forejtek, MVDr. J. Minář, MVDr. K. Peštál, staff members of the District Veterinary Service Břeclav) for the collection of blood specimens.

Sera of 17 wild boars shot in the Břeclav district were kindly supplied by the State Veterinary Institute in Jihlava (the former Director MVDr. J. Holejšovský, MVDr. P. Barták and MVDr. I. Kucharovičová). MVDr. Š. Svobodová was involved in the early serological investigations of the animals.

REFERENCES

Received: 02–01–16
Accepted after corrections: 02–03–01

Corresponding Author

Doc. RNDr. Zdeněk Hubálek, DrSc., Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Klášterní 2, 691 42 Valtice, Czech Republic
Tel. +420 6 27 35 29 61, fax +420 6 27 35 23 87, e-mail: zhubalek@brno.cas.cz