Table of Contents
For Authors
For Reviewers
Journal of Forest Science

Potential changes in Czech forest soil carbon stocks under different climate change scenarios

DOI:10.17221/103/2015-JFSCitation:I. Marková, D. Janouš, M. Pavelka, J. Macků, K. Havránková, K. Rejšek, M.V. Marek (2016): Potential changes in Czech forest soil carbon stocks under different climate change scenarios. J. For. Sci., 62: 537-544.
fulltext

Detailed inventory data (n = 3,930; approximately one representative sampling point per 650 ha) on soil organic carbon (SOC) to a depth of 30 cm has been used to characterize carbon content in forest soils in the Czech Republic across all altitudinal vegetation zones and forest ecological series. This data set was used to predict the most probable changes in soil carbon content in the altitudinal vegetation zones due to global warming. The mean value of the SOC content in forest soils of the Czech Republic was determined to be 62.6 ± 17.2 t·ha–1. Under different warming scenarios the major SOC loss was observed at an altitude of 700–900 m a.s.l. Using a pessimistic emission scenario in the climatic model (i.e. predicted temperature change by +4.24°C), losses of C from forest soils in the Czech Republic, or potentially in central Europe, could be as high as 13% of the current carbon stock in forest soils.

References
Bottner Pierre, Coûteaux Marie-Madeleine, Anderson Jonathan M., Berg Björn, Billès Georges, Bolger Tom, Casabianca Hervé, Romanyá Joan, Rovira Pere (2000): Decomposition of 13C-labelled plant material in a European 65–40° latitudinal transect of coniferous forest soils: simulation of climate change by translocation of soils. Soil Biology and Biochemistry, 32, 527-543 doi:10.1016/S0038-0717(99)00182-0
 
CALLESEN I., LISKI J., RAULUND-RASMUSSEN K., OLSSON M. T., TAU-STRAND L., VESTERDAL L., WESTMAN C. J. (2003): Soil carbon stores in Nordic well-drained forest soils-relationships with climate and texture class. Global Change Biology, 9, 358-370 doi:10.1046/j.1365-2486.2003.00587.x
 
Cienciala Emil, Exnerová Zuzana, Schelhaas Mart-Jan (2008): Development of forest carbon stock and wood production in the Czech Republic until 2060. Annals of Forest Science, 65, 603-603 doi:10.1051/forest:2008043
 
de Vries W., Solberg S., Dobbertin M., Sterba H., Laubhahn D., Reinds G.J., Nabuurs G.J., Gundersen P., Sutton M.A. (2008): Ecologically implausible carbon response? Nature, 451: E1–E3.
 
Dixon R. K., Solomon A. M., Brown S., Houghton R. A., Trexier M. C., Wisniewski J. (1994): Carbon Pools and Flux of Global Forest Ecosystems. Science, 263, 185-190 doi:10.1126/science.263.5144.185
 
Euskirchen E.S., McGuire A.D., Chapin F.S., Rupp T.S. (2010): The changing effects of Alaska’s boreal forests on the climate systemThis article is one of a selection of papers from The Dynamics of Change in Alaska’s Boreal Forests: Resilience and Vulnerability in Response to Climate Warming.. Canadian Journal of Forest Research, 40, 1336-1346 doi:10.1139/X09-209
 
Falloon P., Jones C.D., Cerri C.E., Al-Adamat R., Kamoni P., Bhattacharyyae T., Easterf M., Paustianf K., Killianf K., Colemang K., Milneh E. (2007): Climate change and its impact on soil and vegetation carbon storage in Kenya, Jordan, India and Brazil. Agriculture, Ecosystems & Environment, 122: 114–124.
 
Forest Management Institute (2008): Forest and Forest Management Report of the Czech Republic. Prague, Ministry of Agriculture of the Czech Republic: 112.
 
Jones D.L., Healey J.R., Willett V.B., Farrar J.F., Hodge A. (2005): Dissolved organic nitrogen uptake by plants – an important N uptake pathway? Soil Biology and Biochemistry, 37: 413–423.
 
Kalvová J., Kašpárek L., Janouš D., Žalud Z., Kazmarová H. (2002): Zpřesnění scénářů projekce klimatické změny na území České republiky a odhadů projekce klimatické změny na hydrologický režim, sektor zemědělství, sektor lesního hospodářství a na lidské zdraví v ČR. Prague, Národní klimatický program České republiky: 151.
 
Kurz-Besson C., Coûteaux M. M., Berg B., Remacle J., Ribeiro C., Romanyà J., Thiéry J. M. (2006): A climate response function explaining most of the variation of the forest floor needle mass and the needle decomposition in pine forests across Europe. Plant and Soil, 285, 97-114 doi:10.1007/s11104-006-0061-9
 
Ladegaard-Pedersen Pernille, Elberling Bo, Vesterdal Lars (2005): Soil carbon stocks, mineralization rates, and CO 2 effluxes under 10 tree species on contrasting soil types. Canadian Journal of Forest Research, 35, 1277-1284 doi:10.1139/x05-045
 
Lal R. (2004): Soil carbon sequestration to mitigate climate change. Geoderma, 123, 1-22 doi:10.1016/j.geoderma.2004.01.032
 
Liski J., Westman J. (1997): Carbon storage in forest soil of Finland. 1. Effect of thermoclimate. Biogeochemistry, 36: 239–260.doi:10.1023/A:1005711024022
 
Liski Jari, Perruchoud Daniel, Karjalainen Timo (2002): Increasing carbon stocks in the forest soils of western Europe. Forest Ecology and Management, 169, 159-175 doi:10.1016/S0378-1127(02)00306-7
 
Magnani Federico, Mencuccini Maurizio, Borghetti Marco, Berbigier Paul, Berninger Frank, Delzon Sylvain, Grelle Achim, Hari Pertti, Jarvis Paul G., Kolari Pasi, Kowalski Andrew S., Lankreijer Harry, Law Beverly E., Lindroth Anders, Loustau Denis, Manca Giovanni, Moncrieff John B., Rayment Mark, Tedeschi Vanessa, Valentini Riccardo, Grace John (2007): The human footprint in the carbon cycle of temperate and boreal forests. Nature, 447, 849-851 doi:10.1038/nature05847
 
Pavelka Marian, Acosta Manuel, Marek Michal V., Kutsch Werner, Janous Dalibor (2007): Dependence of the Q10 values on the depth of the soil temperature measuring point. Plant and Soil, 292, 171-179 doi:10.1007/s11104-007-9213-9
 
Plíva K. (1984): Typologická klasifikace lesů ČSR. Brandýs nad Labem, Lesprojekt: 172.
 
Reay Dave S., Dentener Frank, Smith Pete, Grace John, Feely Richard A. (): Global nitrogen deposition and carbon sinks. Nature Geoscience, 1, 430-437 doi:10.1038/ngeo230
 
Rodeghiero Mirco, Cescatti Alessandro (2005): Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps. Global Change Biology, 11, 1024-1041 doi:10.1111/j.1365-2486.2005.00963.x
 
Scharlemann Jörn PW, Tanner Edmund VJ, Hiederer Roland, Kapos Valerie (2014): Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management, 5, 81-91 doi:10.4155/cmt.13.77
 
Schwartz D, Namri M (2002): Mapping the total organic carbon in the soils of the Congo. Global and Planetary Change, 33, 77-93 doi:10.1016/S0921-8181(02)00063-2
 
Jo Smith Pete Smith,, Jeannette Meyer Martin Wattenbach,, Sönke Zaehle Marcus Lindner,, Robert J.A. Jones Roland Hiederer,, Mark Rounsevell Luca Montanarella,, Reginster Isabelle, Kankaanpää Susanna (2006): Projected changes in mineral soil carbon of European forests, 1990–2100. Canadian Journal of Soil Science, 86, 159-169 doi:10.4141/S05-078
 
Subke Jens-Arne, Reichstein Markus, Tenhunen John D (2003): Explaining temporal variation in soil CO2 efflux in a mature spruce forest in Southern Germany. Soil Biology and Biochemistry, 35, 1467-1483 doi:10.1016/S0038-0717(03)00241-4
 
Trnka M., Muška F., Semerádová D., Dubrovský M., Kocmánková E., Žalud Z. (2007): European Corn Borer life stage model: Regional estimates of pest development and spatial distribution under present and future climate. Ecological Modelling, 207, 61-84 doi:10.1016/j.ecolmodel.2007.04.014
 
Vogel Jason G, Valentine David W, Ruess Roger W (2005): Soil and root respiration in mature Alaskan black spruce forests that vary in soil organic matter decomposition rates. Canadian Journal of Forest Research, 35, 161-174 doi:10.1139/x04-159
 
Xu C., Gertner G.Z., Scheller R.M. (2009): Uncertainties in the response of a forest landscape to global climatic change. Global Change Biology, 15: 116–131.
 
Zlatník A. (1976): Lesnická fytocenologie. Prague, SZN: 387.
 
fulltext