Intra-annual patterns of weather and daily radial growth changes of Norway spruce and their relationship in the Western Carpathian mountain region over a period of 2008–2012

DOI:10.17221/24/2015-JFSCitation:A. Leštianska, K. Merganičová, J. Merganič, K. Střelcová (2015): Intra-annual patterns of weather and daily radial growth changes of Norway spruce and their relationship in the Western Carpathian mountain region over a period of 2008–2012. J. For. Sci., 61: 315-324.
download PDF
The contribution presents the results of a 5-year (2008–2012) dendroecological research in a Norway spruce (Picea abies [L.] Karst.) clone forest (Northern Slovakia). Due to different climatic and soil moisture conditions in the monitored years, different seasonal courses of stem increment formation were observed using band dendrometers with continuous data recording. The lack of precipitation affected growth processes mainly during the growth culmination and at the end of summer. The multiple regression analysis of the impact of individual factors on stem circumference changes on the basis of their partial correlation coefficients revealed that the individual environmental characteristics influenced daily stem radial changes with time lags of one to ten days. The results of the analysis of variance showed that the stem radial reactions to climatic and soil moisture factors were not significantly different between the clones.
References:
Bouriaud O., Leban J.-M., Bert D., Deleuze C. (2005): Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree Physiology, 25, 651-660 doi:10.1093/treephys/25.6.651
 
Bouriaud O., Popa I. (2009): Comparative dendroclimatic study of Scots pine, Norway spruce, and silver fir in the Vrancea Range, Eastern Carpathian Mountains. Trees, 23, 95-106 doi:10.1007/s00468-008-0258-z
 
Clausnitzer Falko, Köstner Barbara, Schwärzel Kai, Bernhofer Christian (2011): Relationships between canopy transpiration, atmospheric conditions and soil water availability—Analyses of long-term sap-flow measurements in an old Norway spruce forest at the Ore Mountains/Germany. Agricultural and Forest Meteorology, 151, 1023-1034 doi:10.1016/j.agrformet.2011.04.007
 
Čufar K., Prislan P., Gričar J. (2008a): Cambial activity and wood formation in beech (Fagus sylvatica) during the 2006 growth season. Wood Research, 53: 1–12.
 
Deslauriers A., Rossi S., Anfondillo T. (2007): Dendrometer and intra-annual tree growth: What kind of information can be inferred? Dendrochronologia, 25: 113–124.
 
Dillen S.Y., Storme V., Marron N., Bastien C., Neyrinck S., Steenackers M., Ceulemans R., Boerjan W. (2009): Genomic regions invlved in productivity of two interspecific poplar families in Europe. 1. Stem height, circumference and volume. Tree Genetics & Genomes, 5: 147–164.
 
Downes G., Beadle Chris, Worledge D. (1999): Daily stem growth patterns in irrigated Eucalyptus globulus and E. nitens in relation to climate. Trees, 14, 102-111 doi:10.1007/PL00009752
 
Drew David Michael, Downes Geoffrey M., Grzeskowiak Valerie, Naidoo Thimagren (2009): Differences in daily stem size variation and growth in two hybrid eucalypt clones. Trees, 23, 585-595 doi:10.1007/s00468-008-0303-y
 
Eriksson G. (1982): Ecological genetics of conifers in Sweden. Silva Fennica, 16: 149–156.
 
IPCC (2001): Climate change 2001: the scientific basis. In: Contribution of Workking Group I to the Third Assessment Report of the IPCC: Cambridge, Cambridge University Press: 83.
 
Ge Zhen-Ming, Kellomäki Seppo, Zhou Xiao, Wang Kai-Yun, Peltola Heli, Väisänen Hannu, Strandman Harri (2013): Effects of climate change on evapotranspiration and soil water availability in Norway spruce forests in southern Finland: an ecosystem model based approach. Ecohydrology, 6, 51-63 doi:10.1002/eco.276
 
Gryc V., Hacura J., Vavrčík H., Urban J., Gebauer R. (2012): Monitoring of xylem formationin Picea abies under drought stress influence. Dendrobiology, 67: 15–24.
 
Hylen G. (1997): Genetic variation of wood density and its relationship with growth traits in young Norway spruce. Silvae Genetica, 46: 55–60.
 
Ježík M., Blaženec M., Střelcová K. (2007): Intraseasonal stem circumference oscillations: their connection to weather course. In: Střelcová K., Škvarenina J., Blaženec M. (eds): Bioclimatology and Natural Hazards. International Scientific Conference. Poľana nad Detvou, Sept 17–20, 2007: [CD].
 
Ježík Marek, Blaženec Miroslav, Letts Matthew G., Ditmarová Ľubica, Sitková Zuzana, Střelcová Katarína (2015): Assessing seasonal drought stress response in Norway spruce ( Picea abies (L.) Karst.) by monitoring stem circumference and sap flow. Ecohydrology, 8, 378-386 doi:10.1002/eco.1536
 
King Gregory, Fonti Patrick, Nievergelt Daniel, Büntgen Ulf, Frank David (2013): Climatic drivers of hourly to yearly tree radius variations along a 6°C natural warming gradient. Agricultural and Forest Meteorology, 168, 36-46 doi:10.1016/j.agrformet.2012.08.002
 
Klein Tamir, Rotenberg Eyal, Cohen-Hilaleh Ella, Raz-Yaseef Naama, Tatarinov Fyodor, Preisler Yakir, Ogée Jérôme, Cohen Shabtai, Yakir Dan (2014): Quantifying transpirable soil water and its relations to tree water use dynamics in a water-limited pine forest. Ecohydrology, 7, 409-419 doi:10.1002/eco.1360
 
Kmeť J., Ditmarová Ľ., Kurjak D. (2008): Drought as stress factor and its role in spruce (Picea abies /L./ Karst) dieback. Beskydy, 1: 35–41.
 
Knott R. (2004): Seasonal dynamics of the diameter increment of fir (Abies alba Mill.) and beech (Fagus sylvatica L.) in a mixed stand. Journal of Forest Science, 50: 149–160.
 
Kocher P., Horna V., Leuschner C. (): Environmental control of daily stem growth patterns in five temperate broad-leaved tree species. Tree Physiology, 32, 1021-1032 doi:10.1093/treephys/tps049
 
Lapin M., Faško P., Kveták Š. (1988): Metodický predpis 3-09-1/1, Klimatické normály. Bratislava, SHMÚ: 25.
 
Larcher W. (2003): Physiological Plant Ecology – Ecophysiology and Stress Physiology of Functional Groups. Berlin, Springer-Verlag: 514.
 
Lebourgeois F., Bréda N., Ulrich E., Granier A. (2005): Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees, 19, 385-401 doi:10.1007/s00468-004-0397-9
 
Mayer P., Prins K. (2003): State of Europe’s Forests 2003. The MCPFE Report on Sustainable Forest Management in Europe. Horn, Ferdinand Berger & Söhne GmbH: 114.
 
Makinen H., Nojd P., Saranpaa P. (2003): Seasonal changes in stem radius and production of new tracheids in Norway spruce. Tree Physiology, 23, 959-968 doi:10.1093/treephys/23.14.959
 
Mistrík I., Ješko T., Repčák M., Masarovičová E., Gašparíková O. (2002): Fyziológia stresu. In: Masarovičová E., Repčák M. et al. (eds): Fyziológia rastlín. Bratislava, Univerzita Komenského: 267–283.
 
Oberhuber Walter, Gruber Andreas (2010): Climatic influences on intra-annual stem radial increment of Pinus sylvestris (L.) exposed to drought. Trees, 24, 887-898 doi:10.1007/s00468-010-0458-1
 
Orwig D. A., Abrams Marc D. (): Variation in radial growth responses to drought among species, site, and canopy strata. Trees, 11, 474- doi:10.1007/s004680050110
 
Panshin A.J., De Zeeuw C. (1980): Textbook of Wood Technology. New York, McGraw-Hill: 722.
 
Sevanto S., Suni T., Pumpanen J., Gronholm T., Kolari P., Nikinmaa E., Hari P., Vesala T. (2006): Wintertime photosynthesis and water uptake in a boreal forest. Tree Physiology, 26, 749-757 doi:10.1093/treephys/26.6.749
 
Schmitt U., Möller R., Eckstein D. (2000): Seasonal wood formation dynamics of beech (Fagus sylvatica L.) and black locust (Robinia pseudoacacia L.) as determined by the “pinning” technique. Journal of Applied Botany, 74: 10–16.
 
Schmidt-Vogt H. (1978): Genetics of Picea abies (L.) Karst. Annales Forestales, 7/5: 147–186.
 
Sonesson Johan, Eriksson Gösta (2003): Genetic variation in drought tolerance in picea abies seedlings and its relationship to growth in controlled and field environments. Scandinavian Journal of Forest Research, 18, 7-18 doi:10.1080/02827581.2003.10383133
 
Soulé Peter T. (2011): Changing Climate, Atmospheric Composition, and Radial Tree Growth in a Spruce-Fir Ecosystem on Grandfather Mountain, North Carolina. Natural Areas Journal, 31, 65-74 doi:10.3375/043.031.0108
 
Strmeň S. (2004): Stav autovegetatívneho smrekového porastu 11 rokov po výsadbe v imisiami zasiahnutej oblasti Kysúc. Forestry Journal, 50: 41–52.
 
Škvarenina J., Tomlain J., Hrvoľ J., Škvareninová J., Nejedlík P. (2009): Progress in dryness and wetness parameters in altitudinal vegetation stages of West Carpathians: Time-series analysis 1951–2007. Quarterly Journal of the Hungarian Meteorological Service, 113: 47–54
 
Vieira Joana, Rossi Sergio, Campelo Filipe, Freitas Helena, Nabais Cristina (2013): Seasonal and daily cycles of stem radial variation of Pinus pinaster in a drought-prone environment. Agricultural and Forest Meteorology, 180, 173-181 doi:10.1016/j.agrformet.2013.06.009
 
Vitas A. (2011): Seasonal growth variation of pine, spruce, and birch recorded by band dendrometers in NE Lithuania. Baltic Forestry, 17: 197–204.
 
Volland-Voigt Franziska, Bräuning Achim, Ganzhi Oswaldo, Peters Thorsten, Maza Hector (2011): Radial stem variations of Tabebuia chrysantha (Bignoniaceae) in different tropical forest ecosystems of southern Ecuador. Trees, 25, 39-48 doi:10.1007/s00468-010-0461-6
 
Zweifel R., Hasler R. (2001): Dynamics of water storage in mature subalpine Picea abies: temporal and spatial patterns of change in stem radius. Tree Physiology, 21, 561-569 doi:10.1093/treephys/21.9.561
 
Zweifel Roman, Item Hans, Häsler Rudolf (2000): Stem radius changes and their relation to stored water in stems of young Norway spruce trees. Trees, 15, 50-57 doi:10.1007/s004680000072
 
download PDF

© 2017 Czech Academy of Agricultural Sciences