Influence of rainfall data on the uncertainty of flood simulation

DOI:10.17221/156/2015-SWRCitation:Walega A., Ksiazek L.: (2016): Influence of rainfall data on the uncertainty of flood simulation. Soil & Water Res., 11: 277-284.
download PDF

The aim of this paper was to determine the influence of factors related to rainfall data on the uncertainty flood simulation. The calculations were based on a synthetic unit hydrograph NRCS-UH. Simulation uncertainty was determined by means of GLUE method. The calculations showed that in the case of a catchment with limited meteorological data, it is better to use rainfall data from a single station located within the catchment, than to take into account the data from higher number of stations, but located outside the catchment area. The parameters of the NRCS-UH model (curve number and initial abstraction) were found to be less variable when the input contained rainfall data from a single rainfall station. It was also manifested by a lower uncertainty of the simulation results for the variant with one rainfall station, as compared to the variant based on the use of averaged rainfall in the catchment.

References:
Anctil François, Lauzon Nicolas, Andréassian Vazken, Oudin Ludovic, Perrin Charles (2006): Improvement of rainfall-runoff forecasts through mean areal rainfall optimization. Journal of Hydrology, 328, 717-725 doi:10.1016/j.jhydrol.2006.01.016
 
Bárdossy A., Das T. (2008): Influence of rainfall observation network on model calibration and application. Hydrology and Earth System Sciences, 12, 77-89 doi:10.5194/hess-12-77-2008
 
Bates Bryson C., Campbell Edward P. (2001): A Markov Chain Monte Carlo Scheme for parameter estimation and inference in conceptual rainfall-runoff modeling. Water Resources Research, 37, 937-947 doi:10.1029/2000WR900363
 
Bedient P.B., Huber W.C., Vieux B.E. (2013): Hydrology and Floodplain Analysis. Harlow, Pearson.
 
Beven Keith, Binley Andrew (1992): The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes, 6, 279-298 doi:10.1002/hyp.3360060305
 
Blasone R.-S. (2007): Parameter Estimation and Uncertainty Assessment in Hydrological Modelling. [Ph.D. Thesis.] Lyngby, Institute of Environment & Resources, Technical University of Denmark.
 
Blasone R.-S., Vrugt J.A., Madsen H., Rosbjerg D., Robinson B.A., Zyvoloski G.A. (2008): Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Advances in Water Resources, 31: 630−648.
 
Bormann H. (2006): Impact of spatial data resolution on simulated catchment water balances and model performance of the multi-scale TOPLATS model. Hydrology and Earth System Sciences, 10, 165-179 doi:10.5194/hess-10-165-2006
 
Butts Michael B., Payne Jeffrey T., Kristensen Michael, Madsen Henrik (2004): An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation. Journal of Hydrology, 298, 242-266 doi:10.1016/j.jhydrol.2004.03.042
 
Chen Xi, Yang Tao, Wang Xiaoyan, Xu Chong-Yu, Yu Zhongbo (2013): Uncertainty Intercomparison of Different Hydrological Models in Simulating Extreme Flows. Water Resources Management, 27, 1393-1409 doi:10.1007/s11269-012-0244-5
 
Cunderlik J.M., Simonovic S.P. (2004): Calibration, Verification and Sensitivity Analysis of the HEC-HMS Hydrologic Model. Report IV. CFCAS Project: Assessment of Water Resources Risk and Volunerability to Changing Climatic Conditions. Ontario, University of Western.
 
Diaz-Ramirez Jairo N., McAnally William H., Martin James L. (2012): Sensitivity of Simulating Hydrologic Processes to Gauge and Radar Rainfall Data in Subtropical Coastal Catchments. Water Resources Management, 26, 3515-3538 doi:10.1007/s11269-012-0088-z
 
Jin Xiaoli, Xu Chong-Yu, Zhang Qi, Singh V.P. (2010): Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model. Journal of Hydrology, 383, 147-155 doi:10.1016/j.jhydrol.2009.12.028
 
Kovář Pavel, Hrabalíková M., Neruda M., Neruda R., Šrejber J., Jelínková A., Bačinová H. (): Choosing an appropriate hydrological model for rainfall-runoff extremes in small catchments. Soil and Water Research, 10, 137-146 doi:10.17221/16/2015-SWR
 
Lü Haishen, Hou Ting, Horton Robert, Zhu Yonghua, Chen Xi, Jia Yangwen, Wang Wen, Fu Xiaolei (2013): The streamflow estimation using the Xinanjiang rainfall runoff model and dual state-parameter estimation method. Journal of Hydrology, 480, 102-114 doi:10.1016/j.jhydrol.2012.12.011
 
Moriasi D.N., Arnold J.G., Van Liew M.W., Bingner R.L., Harmel R.D., Veith T.L. (2007): Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agricultural and Biological Engineers, 50: 885–900.
 
Nash J.E., Sutcliffe J.V. (1970): River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10, 282-290 doi:10.1016/0022-1694(70)90255-6
 
USACE (2008): Hydrologic Modelling System HEC-HMS User’s Manual. Davis, USACE.
 
USDA (1986): Urban Hydrology for Small Watershed. Technical Release 55. Washington, USDA.
 
Wu Simon, Li Jonathan, Huang G. H. (2008): Characterization and Evaluation of Elevation Data Uncertainty in Water Resources Modeling with GIS. Water Resources Management, 22, 959-972 doi:10.1007/s11269-007-9204-x
 
XIONG LIHUA, WAN MIN, WEI XIAOJING, O'CONNOR KIERAN M. (2009): Indices for assessing the prediction bounds of hydrological models and application by generalised likelihood uncertainty estimation / Indices pour évaluer les bornes de prévision de modèles hydrologiques et mise en œuvre pour une estimation d'incertitude par vraisemblance généralisée. Hydrological Sciences Journal, 54, 852-871 doi:10.1623/hysj.54.5.852
 
Xu Chong-yu, Tunemar Liselotte, Chen Yongqin David, Singh V.P. (2006): Evaluation of seasonal and spatial variations of lumped water balance model sensitivity to precipitation data errors. Journal of Hydrology, 324, 80-93 doi:10.1016/j.jhydrol.2005.09.019
 
download PDF

© 2017 Czech Academy of Agricultural Sciences