Plant Protect. Sci., 2019, 55(2):116-122 | DOI: 10.17221/150/2017-PPS

Effect of phenolic acid content on acceptance of hazel cultivars by filbert aphidOriginal Paper

Magdalena Gantner1, Agnieszka Najda2*, Dariusz Piesik3*
1 Department of Functional Food, Ecological Food and Commodities, Warsaw University of Life Sciences, Warsaw, Poland
2 Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, Lublin, Poland
3 Department of Entomology and Molecular Phytopathology, UTP University of Science and Technology, Bydgoszcz, Poland

The allelopatic effect of phenolic acids contents in the leaves of six cultivars of hazel (Corylus L.) on the choice of plants by Myzocallis coryli Goetze (filbert aphid), one of the most important pest of hazel in Poland and throughout the world, was identified. The cvs White Filbert, Mogulnus, and Luizen Zellernus were more resistant to the feeding of aphids in all the years than cvs Minnas, Barra, and Halls Giant. The highest content of total phenolic acids was reported in the leaves of cvs White Filbert and Luizen Zellernuss, with a low level of acceptance by aphids. These cultivars demonstrated a high concentration of gallic acid and caffeic acid. In the leaves of cvs Minnas and Halls Giant, much infested by aphids, the total content of phenolic acids was significantly lower. Moreover, gallic and caffeic acids occurred at significantly lower concentrations. The chromatographic analysis of hazel leaf extracts revealed the presence of eight phenolic acids: gallic, protocatechuic, p-hydroxybenzoic, salicylic, chlorogenic, ferrulic, caffeic, and α-resorcinolic. The leaves of the tested cultivars, irrespective of the level of resistance to filbert aphid, showed a definitely higher concentration of acids, derivatives of trans-cinnamic acid, if compared to the amount of acids - derivatives of benzoic acid.

Keywords: Corylus L. Myzocallis coryli; chromatographic analyse

Published: June 30, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Gantner M, Najda A, Piesik D. Effect of phenolic acid content on acceptance of hazel cultivars by filbert aphid. Plant Protect. Sci. 2019;55(2):116-122. doi: 10.17221/150/2017-PPS.
Download citation

References

  1. Amaral J.S., Ferreres F., Andrade P.B., Valentaõ P., Pinheiro C., Santos A., Seabra R. (2005): Phenolic of hazel (Corylus avellana L.) leaves cultivars grown in Portugal. Natural Product Research, 19: 157-163. Go to original source... Go to PubMed...
  2. Bernards M., Båstrup-Spohr L. (2008): Phenylpropanoid metabolism induced by wounding and insect herbivory. In: Schaller A. (ed.): Induced Plant Resistance to Herbivory. Springer Science+Business Media B.V.: 189-211. Go to original source...
  3. Bolwell G.P., Bindschedler L.V., Blee K., Butt V.S., Davies D.R., Gardner S.L. Gerrish C., Minibayeva F. (2002): The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. Journal of Experimental Botany, 53: 1367-1376. Go to original source...
  4. Cabrera H.M., Munoz O., Zuniga G.E., Corcuera L.J., Argandona V.H. (1995): Changes in ferulic acid and lipid content in aphid-infested barley. Phytochemistry, 39: 1023-1029. Go to original source...
  5. Chrzanowski G., Leszczyński B. (2008): Induced accumulation of phenolic acids in winter triticale (Triticosecale Wittm.) under insects feeding. Herba Polonica, 54: 33-41
  6. Cipollini D., Stevenson R., Enright S., Eyles A., Bonello P. (2008): Phenolic metabolites in leaves of the invasive shrub, Lonicera maackii, and their potential phytotoxic and antiherbivore effects. Journal of Chemical Ecology, 34: 144-152. Go to original source... Go to PubMed...
  7. Czerniewicz P., Sytykiewicz H., Durak R., Borowiak-Sobkowiak B., Chrzanowski G. (2017): Role of phenolic compounds during antioxidative responses of winter triticale to aphid and beetle attack. Plant Physiology and Biochemistry, 118: 529-540. Go to original source... Go to PubMed...
  8. De Vos M., Jander G. (2010): Volatile communication in plant-aphid interactions. Current Opinion in Plant Biology, 13: 366-371. Go to original source... Go to PubMed...
  9. Eleftherianos I., Vamvatsikos P., Ward D., Gravanis F. (2006): Changes in the levels of plant total phenols and free amino acids induced by two cereal aphids and effects on aphid fecundity. Journal of Applied Entomology, 130: 1-15. Go to original source...
  10. Fraisse D., Carnat A., Carnat A.P., Lamaison J.L. (1999): Standardization of hazel leaf. Annales Pharmaceutiques Francaises, 57: 406-409. Go to PubMed...
  11. Gantner M. (2000): Aphidofauna of hazel bushes (Corylus L.) on a protected plantation, an unprotected plantation and in a forest. Annales Universitatis Mariae Curie-Skłodowska, Sectio EEE: Horticultura, 8: 155-167.
  12. Gantner M. (2008): Źródła odporności wybranych odmian leszczyny wielkoowocowej (Corylus L.) na wielkopąkowca leszczynowego (Phytoptus avellanae Nal.) i zdobniczkę leszczynową (Myzocallis coryli Goetze). [Dissertation.] Lublin, University of Life Science.
  13. Gatehouse J.A. (2002): Plant resistance towards insect herbivores: a dynamic interaction. New Phytologist, 156: 145-169. Go to original source... Go to PubMed...
  14. Goggin F.L., Zhu-Salzman K. (2015): Editorial overview: Pests and resistance: social networking - Studying the web of plant-insect interactions to improve host plant resistance. Current Opinion in Insect Science, 9: v-viii. Go to original source...
  15. Harborne J.B. (1997): Ekologia biochemiczna. Introduction to Ecological Biochemistry. Warsaw, PWN.
  16. Lei J., Finlayson S,A, Salzman R.A., Shan L., Zhu-Salzman K. (2014): BOTRYTIS-INDUCED KINASE1 modulates Arabidopsis resistance to green peach aphids via Phytoalexin Deficient4. Plant Physiology, 165: 1657-1670. Go to original source... Go to PubMed...
  17. Leszczyński B. (2001a): The role of allelochemicals in insectplant interactions. In: Biochemical Interactions in Environment. Lublin, Medical University: 61-85.
  18. Leszczyński B. (2001b): Naturalna odporność roślin na szkodniki. In: Biochemical Interactions in Environment. Lublin, Medical University: 87-108.
  19. Lombardo L. Coppola G., Zelasco S. (2016): New technologies for insect-resistant and herbicide-tolerant plants. Trends in Biotechnology, 34: 49-57. Go to original source... Go to PubMed...
  20. Mallikarjuna N., Kranthi K.R., Jadhav D.R., Kranthi S., Chandra S. (2004): Influence of foliar chemical compounds on the development of Spodoptera litura (Fab.) in interspecific derivatives of groundnut. Journal of Applied Entomology, 128: 321-328. Go to original source...
  21. Mao J.Q., Burt A.J., Ramputh A.I., Simmonds J., Cass L., Habbard K., Miller S., Altosaar I., Arnason J.T. (2007): Diverted secondary metabolism and improved resistance to European corn borer (Ostrinia nubilalis) in maize (Zea mays L.) transformed with wheat oxalate oxidase. Journal of Agricultural and Food Chemistry, 55: 2582-2589. Go to original source... Go to PubMed...
  22. Najda A. (2004): Plonowanie i ocena fitochemiczna roślin w różnych fazach wzrostu dwu odmian selera naciowego (Apium graveolens L. var. dulce Mill./Pers.). [PhD Thesis.] University of Life Science in Lublin.
  23. Najda A., Dyduch- Siemińska M., Dyduch J., Gantner M. (2014): Comparative analysis of secondary metabolites contents in Fragaria vesca L. fruits. The Annals of Agricultural and Environmental Medicine, 21: 339-343. Go to original source... Go to PubMed...
  24. Nollet L.M. (ed.) (2000): Food Analysis by HPLC. Basel, Marcel Dekker: 511-587.
  25. Oliveira I., Sousa A., Valenta P., Andrade P.B., Ferreira I.C.F.R., Ferreres F., Bento A., Seabra R., Estevinho L., Pereira J.A. (2006): Hazel (Corylus avellana L.) leaves as source of antimicrobial and antioxidative compounds. Food Chemistry, 105: 1018-1025. Go to original source...
  26. Pańka D., Piesik D., Jeske M., Baturo-Cieśniewska A. (2013): Production of phenolics and the emission of volatile organic compounds by perennial ryegrass (Lolium perenne L.)/Neotyphodium lolii association as a response to infection by Fusarium poae. Journal of Plant Physiology, 170: 1010-1019. Go to original source... Go to PubMed...
  27. Pélissié B., Crossley M.S., Cohen Z.P., Schoville S.D. (2018): Rapid evolution in insect pests: the importance of space and time in population genomics studies. Current Opinion in Insect Science, 26: 8-16. Go to original source... Go to PubMed...
  28. Piskornik Z. (1994): Relationships between the resistance of hazelnut cultivars to the hazelnut weevil and the content of sugars, amino acids, and phenols in the endocarp tissue of growing nuts. Acta Horticulturae, 351: 617-624. Go to original source...
  29. Qawasmeh A., Obied H.K., Raman A., Wheatley W. (2012a): Influence of fungal endophyte infection on phenolic content and antioxidant activity in grasses: interaction between Lolium perenne and different strains of Neotyphodium lolii. Journal of Agricultural and Food Chemistry, 60: 3381-3388. Go to original source... Go to PubMed...
  30. Qawasmeh A., Raman A., Wheatley W., Nicol H. (2012b): Antioxidative capacity of phenolic compounds extracted from Lolium perenne and Lolium arundinaceum infected with Neotyphodium (Hypocreales: Clavicipitaceae). Acta Physiologiae Plantarum, 34: 827-833. Go to original source...
  31. Smith C.M., Boyko E.V. (2007): The molecular bases of plant resistance and defense responses to aphid feeding: current status. Entomologia Experimentalis et Applicata, 122: 1-16. Go to original source...
  32. Tefera T., Mugo S., Beyene Y. (2016): Developing and deploying insect resistant maize varieties to reduce preand post-harvest food losses in Africa. Food Security. 8: 211-220. Go to original source...
  33. Walczyńska A. (2009): Bioenergetic strategy of a xylemfeeder. Journal of Insect Physiology, 55: 1107-1117. Go to original source... Go to PubMed...
  34. Wojciechowicz-Żytko E. (2003): Development of Myzocallis coryli Goetze (Homoptera, Aphidodea) on the different hazel (Corylus L.) cultivars. Journal of Plant Protection Research, 43: 369-374.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.