Plant Protect. Sci., 2023, 59(3):209-216 | DOI: 10.17221/34/2023-PPS

Molecular study of turnip mosaic virus population in the Czech RepublicOriginal Paper

Dana Šafářová ORCID...1, Luboš Majeský2, Milan Navrátil ORCID...3
1 Department of Cell Biology and Genetic, Faculty of Science, Palacký University Olomouc, Czech Republic
2 Department of Botany, Faculty of Science, Palacký University Olomouc, Czech Republic
3 Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Czech Republic

Turnip mosaic virus (TuMV) is the most important virus of brassica crops. In our study, we compare the genetic structure of two Czech TuMV populations sampled in the country's 25-year interval of virus presence. The 21 isolates, mainly infecting rutabaga and horseradish, were collected from four farms under organic production, and nearly complete genome sequences, 9 596–9 787 nt in length, were obtained using Sanger sequencing for all of them. The analysis of variability and polymorphism showed differences in genetic structure but the relative stability of both populations and moderate negative selection as a factor affecting the current TuMV population. The newly collected isolates are characterised by a relatively high frequency of intralineage recombinants; interlineage recombinants were not detected compared to the 25-year-old population. The phylogenetic analysis allowed the classification of all Czech isolates into world-B phylogroup, with the prevalence of isolates of subgroup B2. The spread of isolates belonging to the other phylogenetic groups posing higher phytopathological risk, which were present in the old population and some surrounding countries, was not found.

Keywords: sanger sequencing; recombination; phylogeny; population changes; selection pressure

Received: April 6, 2023; Revised: June 11, 2023; Accepted: June 19, 2023; Prepublished online: August 8, 2023; Published: September 20, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Šafářová D, Majeský L, Navrátil M. Molecular study of turnip mosaic virus population in the Czech Republic. Plant Protect. Sci. 2023;59(3):209-216. doi: 10.17221/34/2023-PPS.
Download citation

Supplementary files:

Download file34_2023_PPS_ESM.pdf

File size: 742.32 kB

References

  1. Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. (1997): Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25: 3389-3402. Go to original source... Go to PubMed...
  2. Chod J., Jokes M. (1991): Turnip mosaic virus as a cause of spinach yellow-spotting. Ochrana Rostlin-UVTIZ (CSFR), 27: 211-215.
  3. Glasa M., Šoltys K., Predajňa L., Sihelská N., Nováková S., Šubr Z., Kraic J., Mihálik D. (2018): Molecular and biological characterisation of Turnip mosaic virus isolates infecting poppy (Papaver somniferum and P. rhoeas) in Slovakia. Viruses, 10: 430. doi: 10.3390/v10080430 Go to original source... Go to PubMed...
  4. Huson D.H., Bryant D. (2006): Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23: 254-267. Go to original source... Go to PubMed...
  5. Jenner C.E., Walsh J.A. (1996): Pathotypic variation in turnip mosaic virus with special reference to European isolates. Plant Pathology, 45: 848-856. Go to original source...
  6. Kawakubo S., Gao F., Li S., Tan Z., Huang Y.-K., Adkar-Purushothama C.R., Gurikar C., Maneechoat P., Chiemsombat P., Aie S.S., Furuya N., Shevchenko O., Špak J., Škorić D., Ho S.Y.W., Ohshima K. (2021): Genomic analysis of the brassica pathogen turnip mosaic potyvirus reveals its spread along the former trade routes of the Silk Road. Proceedings of the National Academy of Sciences of the United States of America, 118. doi: 10.1073/pnas.2021221118 Go to original source... Go to PubMed...
  7. Kawakubo S., Tomitaka Y., Tomimura K., Koga R., Matsuoka H., Uematsu S., Yamashita K., Ho S.Y.W., Ohshima K.(2022): The recombinogenic history of turnip mosaic potyvirus reveals its introduction to Japan in the 19th century. Virus Evolution, 8: veac060. doi: 10.1093/ve/veac060 Go to original source... Go to PubMed...
  8. Kozubek E., Irzykowski W., Lehmann P. (2007): Genetic and molecular variability of a Turnip mosaic virus population from horseradish (Cochlearia armoracia L.). Journal of Applied Genetics, 48: 295-306. Go to original source... Go to PubMed...
  9. Kumar S., Stecher G., Tamura K. (2016): MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33: 1870-1874. Go to original source... Go to PubMed...
  10. Li G., Lv H., Zhang S., Zhang S., Li F., Zhang H., Qian W., Fang Z., Sun R. (2019): Plant pathology TuMV management for brassica crops through host resistance: Retrospect and prospects. Plant Pathology, 68: 1035-1044. Go to original source...
  11. Martin D.P., Murrell B., Golden M., Khoosal A., Muhire B. (2015): RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evolution, vev003. doi: 10.1093/ve/vev003 Go to original source... Go to PubMed...
  12. Navrátil M., Šafářová D. (2022): Turnip mosaic virus: a risk for growing brassica vegetables - Yes or No? Úroda (Vědecká příloha časopisu), 12: 163-169. Czech
  13. Němcová V., Buchtová I. (2021): Situační a výhledová zpráva zelenina. Ministerstvo zemědělství, 2021. Available at: https://eagri.cz/public/web/file/692977/Zelenina_2021_web.pdf (accessed March 18, 2023).
  14. Nigam D., LaTourrette K., Souza P.F.N., Garcia-Ruiz H.(2019) Genome-wide variation in Potyviruses. Frontiers in Plant Science, 10: 1 439. doi: 10.3389/fpls.2019.01439 Go to original source... Go to PubMed...
  15. Ohshima K., Tomitaka Y., Wood J.T., Minematsu Y., Kajiyama H., Tomimura K., Gibbs A.J. (2007): Patterns of recombination in turnip mosaic virus genomic sequences indicate hotspots of recombination. Journal of General Virology, 88: 298-315. Go to original source... Go to PubMed...
  16. Ohshima K., Yamaguchi Y., Hirota R., Hamamoto T., Tomimura K., Tan Z., Sano T., Azuhata F., Walsh J.A., Fletcher J., Chen J., Gera A., Gibbs A.J. (2002): Molecular evolution of Turnip mosaic virus: evidence of host adaptation, genetic recombination and geographical spread. Journal of General Virology, 83: 1511-1521. Go to original source... Go to PubMed...
  17. Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J.C., Guirao-Rico S., Librado P., Ramos-Onsins S.E., Sánchez-Gracia A. (2017): DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, Go to original source...
  18. 34: 3299-3302.
  19. Špak J. (1992): Effect of sinigrin on the efficiency of acquisition of turnip mosaic virus by Myzus persicae and Brevicoryne brassicae. Biologia Plantarum, 34: 451-455. Go to original source...
  20. Špak J., Kubelková D. (1990): Occurrence of turnip mosaic virus in opium poppy (Papaver somniferum) in CSFR. Ochrana Rostlin - UVTIZ (CSFR), 26: 257-261.
  21. Tan Z., Wada Y., Chen J., Ohshima K. (2004): Inter- and intralineage recombinants are common in natural populations of Turnip mosaic virus. Journal of General Virology, 85: 2683-2696. Go to original source... Go to PubMed...
  22. Tomimura K., Špak J., Katis N., Jenner C.E., Walsh J.A., Gibbs A.J., Ohshima K. (2004): Comparisons of the genetic structure of populations of Turnip mosaic virus in West and East Eurasia. Virology, 330: 408-423. Go to original source... Go to PubMed...
  23. Yasaka R., Fukagawa H., Ikematsu M., Soda H., Korkmaz S., Golnaraghi A., Katis N., Ho S.Y.W., Gibbs A.J., Ohshima K. (2017): The timescale of emergence and spread of turnip mosaic potyvirus. Scientific Reports, 7: 4240. doi: 10.1038/s41598-017-01934-7 Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.