Czech J. Anim. Sci., X:X | DOI: 10.17221/116/2025-CJAS

Mitigating methane in dairy cattle: Integrated strategies and the evolving role of precision livestock farmingReview

Eva Mixtajová ORCID...1, Joana Nery ORCID...2, Radovan Kasarda ORCID...1, Muzaffer Denlí ORCID...3, Achille Schiavone ORCID...2, Alkan Çağlı ORCID...3, José Francisco Pérez ORCID...4, Hasan Hüseyin İpçak ORCID...3, José Luis Repetto ORCID...4, Stanislava Drotárová ORCID...5, Cecilia Cajarville ORCID...4
1 Faculty of Agrobiology and Food Resources, Project Management Office, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
2 Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
3 Institute of Nutrition and Genomics, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
4 Department of Animal Science, Faculty of Agriculture, Dicle University, Diyarbakir, Türkiye
5 Department of Animal and Food Science, Faculty of Veterinary Medicine, Autonomous University of Barcelona – UAB, Barcelona, Spain


Modern dairy farming faces the dual challenge of meeting global food demands while mitigating its environmental impact, particularly greenhouse gas (GHG) emissions, such as methane (CH4), a potent contributor to climate change. This review explores the role of Precision Livestock Farming (PLF) technologies in monitoring and reducing CH4 emissions from dairy cattle. We evaluate state-of-the-art methods, including direct monitoring (e.g. respiratory chambers, GreenFeed systems) and indirect approaches (e.g. infrared milk spectroscopy, AI-driven analytics), alongside mitigation strategies such as nutritional optimisation, genetic selection, and ruminal additives. PLF emerges as a transformative tool, integrating real-time data on animal health, feed efficiency, and environmental conditions to optimise management practices and reduce emissions per unit of milk produced. By synthesising current research, we highlight the potential of PLF to reconcile productivity with sustainability, offering scalable solutions for the dairy sector. Critical gaps in real-time CH4 monitoring and farm-level implementation are identified, underscoring the need for further innovation. This review provides a roadmap for aligning dairy production with global climate goals while ensuring food security for the growing population.

Keywords: emission monitoring; mitigation strategies; rumen fermentation; ruminant emissions; sustainability

Received: July 28, 2025; Revised: October 22, 2025; Accepted: January 6, 2026; Prepublished online: January 28, 2026 

Download citation

References

  1. Alecrim FB, Devincenzi T, Reyno R, Mederos A, Simon Zinno C, Mariotta J, Lattanzi FA, Nobrega GN, Santander D, Gere JI, Irigoyen L, Ciganda VS. Addition of tannin-containing legumes to native grasslands: Effects on enteric methane emissions, nitrogen losses and animal performance of beef cattle. Sustainability (Basel). 2024 Oct 16;16(20):9135. Go to original source...
  2. Almeida AK, Hegarty RS, Cowie A. Meta-analysis quantifying the potential of dietary additives and rumen modifiers for methane mitigation in ruminant production systems. Anim Nutr. 2021 Dec;7(4):1219-30. Go to original source... Go to PubMed...
  3. Arceo-Castillo JI, Montoya-Flores MD, Molina-Botero IC, Pineiro-Vazquez AT, Aguilar-Perez CF, Ayala-Burgos AJ, Ku-Vera JC. Effect of the volume of methane released into respiration chambers on full system methane recovery. Anim Feed Sci Technol. 2019 Jun;249:54-61. Go to original source...
  4. Archimede H, Eugene M, Magdeleine CM, Boval M, Martin C, Morgavi DP, Lecomte P, Doreau M. Comparison of methane production between C3 and C4 grasses and legumes. Anim Feed Sci Technol. 2011 Aug;166-167:59-64. Go to original source...
  5. Balde H, VanderZaag AC, Burtt S, Evans L, Wagner-Riddle C, Desjardins RL, MacDonald JD. Measured versus modeled methane emissions from separated liquid dairy manure show large model underestimates. Agric Ecosyst Environ. 2016 Aug 16;230:261-70. Go to original source...
  6. Bannink A, van Schijndel MW, Dijkstra J. A model of enteric fermentation in dairy cows to estimate methane emission for the Dutch National Inventory Report using the IPCC Tier 3 approach. Anim Feed Sci Technol. 2011 Aug;166-167:603-18. Go to original source...
  7. Beauchemin KA, Ungerfeld EM, Eckard RJ, Wang M. Fifty years of research on rumen methanogenesis: Lessons learned and future challenges for mitigation. Animal. 2020 Mar;14(S1):s2-s16. Go to original source... Go to PubMed...
  8. Belanche A, Bannink A, Dijkstra J, Durmic Z, Garcia F, Santos FG, Huws S, Jeyanathan J, Lund P, Mackie RI, McAllister TA, Morgavi DP, Muetzel S, Pitta DW, Yanez-Ruiz DR, Ungerfeld EM. Feed additives for methane mitigation: A guideline to uncover the mode of action of antimethanogenic feed additives for ruminants. J Dairy Sci. 2025 Jan;108(1):375-94. Go to original source... Go to PubMed...
  9. Belanche A, Newbold CJ, Morgavi DP, Bach A, Zweifel B, Yanez-Ruiz DR. A meta-analysis describing the effects of the essential oils blend Agolin Ruminant on performance, rumen fermentation and methane emissions in dairy cows. Animals (Basel). 2020 Apr 3;10(4):620. Go to original source... Go to PubMed...
  10. Benchaar C, Hassanat F. Diet supplementation with a mixture of essential oils: Effects on enteric methane emissions, apparent total-tract nutrient digestibility, nitrogen utilization, and lactational performance. J Dairy Sci. 2025 Apr;108(4):3560-72. Go to original source... Go to PubMed...
  11. Bilton TP, Hickey SM, Jonker A, McRae K, Hess MK, Perry BJ, Bryson B, Henry H, Bain W, Booker F, Veenvliet B, Peers-Adams J, Pile G, Waller E, Janssen PH, Tiplady KM, Reid P, Muetzel S, Agnew M, Dodds KG, McEwan JC, Rowe SJ. Milk fatty acids and rumen composition as proxy measures of enteric methane. J Dairy Sci. 2025 May;108(5):5125-44. Go to original source... Go to PubMed...
  12. Bryan G, Whitehayakul S, Roberts N. Nutritional enhancement of animal feed and forage crops via genetic modification. J R Soc N Z. 2024 Feb;55(2):327-42. Go to original source... Go to PubMed...
  13. Capstaff NM, Miller AJ. Improving the yield and nutritional quality of forage crops. Front Plant Sci. 2018 Apr 24;9:535. Go to original source... Go to PubMed...
  14. Cardenas A, Ammon C, Schumacher B, Stinner W, Herrmann C, Schneider M, Weinrich S, Fischer P, Amon T, Amon B. Methane emissions from the storage of liquid dairy manure: influences of season, temperature and storage duration. Waste Manag. 2021 Feb;121:393-402. Go to original source... Go to PubMed...
  15. Chase LE, Fortina R. Environmental and economic responses to precision feed management in dairy cattle diets. Agriculture (Basel). 2023 May;13(5):1032. Go to original source...
  16. Coetzee N, Bica R. Beyond respiration chambers: A field-deployable device for continuous methane emission measurement in cattle. In: Book of Abstracts of the 76th Annual Meeting of the European Federation of Animal Science. Wageningen (Netherlands): Wageningen Academic Publishers; 2025 Aug. p. 254.
  17. Danielsson R, Dicksved J, Sun L, Gonda H, Müller B, Schnurer A, Bertilsson J. Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure. Front Microbiol. 2017 Feb 17;8:226. Go to original source... Go to PubMed...
  18. De Campeneere S, Peiren N. ILVO Ruminant Respiration Facility, Melle, Belgium. In: Pinares C, Waghorn G, editors. Technical manual on respiration chamber designs [Internet]. [place unknown]: Global Research Alliance on Agricultural Greenhouse Gases; 2014 Feb [cited 2025 Jan 23]. Available from: https://globalresearchalliance.org/library/livestock-research-group-technical-manual-respiration-chamber-designs-february-2014/.
  19. de Haas Y, Windig JJ, Calus MPL, Dijkstra J, de Haan M, Bannink A, Veerkamp RF. Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection. J Dairy Sci. 2011 Dec;94(12):6122-34. Go to original source... Go to PubMed...
  20. Della Rosa MM, Jonker A, Waghorn GC. A review of technical variations and protocols used to measure methane emissions from ruminants using respiration chambers, SF6 tracer technique and GreenFeed, to facilitate global integration of published data. Anim Feed Sci Technol. 2021 Jan;279:115018. Go to original source...
  21. Ding L, Cao W, Shi Z, Li B, Wang C, Zhang G, Kristensen S. Carbon dioxide and methane emissions from the scale model of open dairy lots. J Air Waste Manag Assoc. 2016 Jul;66(7):715-25. Go to original source... Go to PubMed...
  22. Dini Y, Briano C, Manetti M, Juliarena P, Picasso V, Gratton R, Astigarraga L. Methane emission and milk production of dairy cows grazing pastures rich in legumes or rich in grasses in Uruguay. Animals (Basel). 2012 Jun 8;2(2):288-300. Go to original source... Go to PubMed...
  23. Dini Y, Cajarville C, Gere J, Fernandez S, Fraga M, Pravia MI, Navajas E, Ciganda V. Association between residual feed intake and enteric methane emissions in Hereford steers. Transl Anim Sci. 2019 Jan 1;3(1):239-46. Go to original source... Go to PubMed...
  24. Dini Y, Gere JI, Cajarville C, Ciganda VS. Using highly nutritious pastures to mitigate enteric methane emissions from cattle grazing systems in South America. Anim Prod Sci. 2018 Dec;58(12):2329-34. Go to original source...
  25. Durmic Z, Duin EC, Bannink A, Belanche A, Carbone V, Carro MD, Crisemann M, Fievez V, Garcia F, Hristov AN, Joch M, Martinez-Fernandez G, Muetzel S, Ungerfeld EM, Wang M, Yanez-Ruiz DR. Feed additives for methane mitigation: Recommendations for identification and selection of bioactive compounds to develop antimethanogenic feed additives. J Dairy Sci. 2025 Jan;108(1):302-21. Go to original source... Go to PubMed...
  26. Engelke SW, Das G, Derno M, Tuchscherer A, Berg W, Kuhla B, Metges CC. Milk fatty acids estimated by mid-infrared spectroscopy and milk yield can predict methane emissions in dairy cows. Agron Sustain Dev. 2018 Jun;38(3):29. Go to original source...
  27. Eugene M, Klumpp K, Sauvant D. Methane mitigating options with forages fed to ruminants. Grass Forage Sci. 2021 Sep;76(3):429-43. Go to original source...
  28. European Environment Agency & European Commission. Report: Annual European Union greenhouse gas inventory 1990-2023 and inventory report 2025 [Internet]. 2025 [cited 2026 Jan 20]. Available from: https://www.eea.europa.eu/en/analysis/publications/annual-european-union-greenhouse-gas-inventory-2025
  29. FAOSTAT - Food and Agriculture Organization of the United Nations. FAOSTAT: emissions from livestock [Internet]. Rome: FAO; 2025 [cited 2025 Jun 25]. Available from: https://www.fao.org/faostat/en/#data/GLE.
  30. Ferguson HJ, Bowen JM, McNicol LC, Bell J, Duthie CA, Dewhurst RJ. The impacts of precision livestock farming tools on the greenhouse gas emissions of an average Scottish dairy farm. Front Sustain Food Syst. 2024 May 22;8:1385672. Go to original source...
  31. Fischer A, Luginbühl T, Delattre L, Delouard JM, Faverdin P. Rear shape in 3 dimensions summarized by principal component analysis is a good predictor of body condition score in Holstein dairy cows. J Dairy Sci. 2015 Jul;98(7):4465-76. Go to original source... Go to PubMed...
  32. Flachowsky G, Lebzien P. Effects of phytogenic substances on rumen fermentation and methane emissions: A proposal for a research process. Anim Feed Sci Technol. 2012 Sep;176(1-4):70-7. Go to original source...
  33. Friedrich J, Ge M, Pickens A, Vigna L. This interactive chart shows changes in the world's top 10 emitters [Internet]. Washington (DC): World Resources Institute; 2023 [cited 2025 Jun 15]. Available from: https://www.wri.org/insights/interactive-chart-shows-changes-worlds-top-10-emitters.
  34. Garnsworthy PC, Craigon J, Hernandez-Medrano JH, Saunders N. Variation among individual dairy cows in methane measurements made on farm during milking. J Dairy Sci. 2012 Jun;95(6):3181-9. Go to original source... Go to PubMed...
  35. Ghassemi Nejad J, Ju MS, Jo JH, Oh KH, Lee YS, Lee SD, Lee HG. Advances in methane emission estimation in livestock: A review of data collection methods, model development and the role of AI technologies. Animals (Basel). 2024 Mar;14(3):435. Go to original source... Go to PubMed...
  36. Glasson CRK, Kinley RD, de Nys R, King N, Adams SL, Packer MA, Svenson J, Eason CT, Magnusson M. Benefits and risks of including the bromoform containing seaweed Asparagopsis in feed for the reduction of methane production from ruminants. Algal Res. 2022 Apr;64:102673. Go to original source...
  37. Global Methane Pledge. Global Methane Pledge: A commitment to reduce global methane emissions at least 30 percent from 2020 levels by 2030 [Internet]. 2021 [cited 2026 Jan 20]. Available from: https://www.globalmethanepledge.org.
  38. Goopy JP, Korir D, Pelster D, Ali AIM, Wassie SE, Schlecht E, Dickhoefer U, Merbold L, Butterbach-Bahl K. Severe below-maintenance feed intake increases methane yield from enteric fermentation in cattle. Br J Nutr. 2020 Jun 14;123(11):1239-46. Go to original source... Go to PubMed...
  39. Hammond KJ, Crompton LA, Bannink A, Dijkstra J, Yanez-Ruiz DR, O'Kiely P, Kebreab E, Eugene MA, Yu Z, Shingfield KJ, Schwarm A, Hristov AN, Reynolds CK. Review of current in vivo measurement techniques for quantifying enteric methane emission from ruminants. Anim Feed Sci Technol. 2016 Sep;219:13-30. Go to original source...
  40. Hanusovsky O, Biro D, Simko M, Galik B, Juracek M, Rolinec M, Balusikova E. The dynamic of the ruminal content pH change and its relationship to milk composition. Acta Vet Brno. 2018 Jun;87(2):119-26. Go to original source...
  41. Hanusovsky O, Biro D, Simko M, Galik B, Juracek M, Rolinec M, Herkel R. Drinking regime evaluation with continuous ruminal monitoring boluses. Acta Fytotech Zootech. 2017 Mar;20(1):1-5. Go to original source...
  42. Herliatika A, Widiawati Y, Jayanegara A, Harahap RP, Kusumaningrum DA, Shiddieqy MI, Adiati U. Meta-analysis of the relationship between dietary starch intake and enteric methane emissions in cattle from in vivo experiments. J Adv Vet Anim Res. 2024 Mar;11(1):212-30. Go to original source... Go to PubMed...
  43. Hook SE, Wright ADG, McBride BW. Methanogens: Methane producers of the rumen and mitigation strategies. Archaea. 2010 Dec 30;2010:945785. Go to original source... Go to PubMed...
  44. Hristov AN, Bannink A, Battelli M, Belanche A, Cajarville Sanz MC, Fernandez-Turren G, Garcia F, Jonker A, Kenny D, Lind V, Meale SJ, Meo D, Munoz C, Pacheco D, Peiren N, Ramin M, Rapetti L, Schwarm A, Stergiadis S, Theodoridou K, Ungerfeld EM, van Gastelen S, Yanez-Ruiz D, Waters SM, Lund P. Feed additives for methane mitigation: Recommendations for testing enteric methane-mitigating feed additives in ruminant studies. J Dairy Sci. 2025 Jan;108(1):322-55. Go to original source... Go to PubMed...
  45. Hristov AN, Oh J, Firkins JL, Dijkstra J, Kebreab E, Waghorn G, Makkar HP, Adesogan AT, Yang W, Lee C, Gerber PJ, Henderson B, Tricarico JM. Special topics - Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J Anim Sci. 2013 Nov;91(11):5045-69. Go to original source... Go to PubMed...
  46. Hristov AN, Oh J, Giallongo F, Frederick T, Weeks H, Zimmerman PR, Harper MT, Hristova RA, Zimmerman RS, Branco AF. The use of an automated system (GreenFeed) to monitor enteric methane and carbon dioxide emissions from ruminant animals. J Vis Exp. 2015 Sep 7;(103):52904. Go to original source...
  47. Huhtanen P, Cabezas-Garcia EH, Utsumi S, Zimmerman S. Comparison of methods to determine methane emissions from dairy cows in farm conditions. J Dairy Sci. 2015 May;98(5):3394-409. Go to original source... Go to PubMed...
  48. Huhtanen P, Krizsan SJ, Ramin M. A meta-analysis of faecal output and nutrient composition, and potential methane emission from manure of dairy cows. Anim Feed Sci Technol. 2021 Dec;(282):115120. Go to original source...
  49. Hungate RE. The rumen and its microbes. New York: Academic Press; 1966.
  50. Jacobs JA, Siegford JM. Invited review: The impact of automatic milking systems on dairy cow management, behavior, health, and welfare. J Dairy Sci. 2012 May;95(5):2227-47. Go to original source... Go to PubMed...
  51. Janssen PH. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim Feed Sci Technol. 2010 Aug;160(1-2):1-22. Go to original source...
  52. Jenkins B, Herold L, de Mendonca M, Loughnan H, Willcocks J, David T, Avis K. Breeding for reduced methane emissions in livestock. Edinburgh: ClimateXChange Publications; 2024. 64 p.
  53. Johnson K, Huyler M, Westberg H, Lamb B, Zimmerman P. Measurement of methane emissions from ruminant livestock using a sulfur hexafluoride tracer technique. Environ Sci Technol. 1994 Feb 1;28(2):359-62. Go to original source... Go to PubMed...
  54. Kang K, Cho H, Jeong S, Jeon S, Lee M, Lee S, Baek Y, Oh J, Seo S. Application of a hand-held laser methane detector for measuring enteric methane emissions from cattle in intensive farming. J Anim Sci. 2022 Aug 1;100(8):skac211. Go to original source... Go to PubMed...
  55. Kaur U, Malacco VMR, Bai H, Price TP, Datta A, Xin L, Sen S, Nawrocki RA, Chiu G, Sundaram S, Min BC, Daniels KM, White RR, Donkin SS, Brito LF, Voyles RM. Invited review: Integration of technologies and systems for precision animal agriculture-a case study on precision dairy farming. J Anim Sci. 2023 Jan 3;101:skad206. Go to original source... Go to PubMed...
  56. Kebreab E, Bannink A, Pressman EM, Walker N, Karagiannis A, van Gastelen S, Dijkstra J. A meta-analysis of effects of 3-nitrooxypropanol on methane production, yield, and intensity in dairy cattle. J Dairy Sci. 2023 Feb;106(2):927-36. Go to original source... Go to PubMed...
  57. Korelidou V, Simitzis P, Massouras T, Gelasakis AI. Infrared thermography as a diagnostic tool for the assessment of mastitis in dairy ruminants. Animals (Basel). 2024 Sep 16;14(18):2691. Go to original source... Go to PubMed...
  58. Leitner S, Ring D, Wanyama GN, Korir D, Pelster DE, Goopy JP, Butterbach-Bahl K, Merbold L. Effect of feeding practices and manure quality on CH4 and N2O emissions from uncovered cattle manure heaps in Kenya. Waste Manag. 2021 May 1;126:209-20. Go to original source... Go to PubMed...
  59. Lewis WH, Lind AE, Sendra KM, Onsbring H, Williams TA, Esteban GF, Hirt RP, Ettema TJG, Embley TM. Convergent evolution of hydrogenosomes from mitochondria by gene transfer and loss. Mol Biol Evol. 2020 Feb 1;37(2):524-39. Go to original source... Go to PubMed...
  60. Lovendahl P, Difford GF, Li B, Chagunda MGG, Huhtanen P, Lidauer MH, Lassen J, Lund P. Review: Selecting for improved feed efficiency and reduced methane emissions in dairy cattle. Animal. 2018 Dec;12(s2):s336-49. Go to original source... Go to PubMed...
  61. Mayo LM, Silvia WJ, Ray DL, Jones BW, Stone AE, Tsai IC, Clark JD, Bewley JM, Heersche G Jr. Automated estrous detection using multiple commercial precision dairy monitoring technologies in synchronized dairy cows. J Dairy Sci. 2019 Mar;102(3):2645-56. Go to original source... Go to PubMed...
  62. McGinn SM, Coulombe JF, Beauchemin KA. Technical note: validation of the GreenFeed system for measuring enteric gas emissions from cattle. J Anim Sci. 2021 Mar 1;99(3):skab046. Go to original source... Go to PubMed...
  63. McNicol LC, Bowen JM, Ferguson HJ, Bell J, Dewhurst RJ, Duthie CA. Adoption of precision livestock farming technologies has the potential to mitigate greenhouse gas emissions from beef production. Front Sustain Food Syst. 2024 Jun 27;8:1414858. Go to original source...
  64. Minutti JG, Negreyra F, Cabrera M, Echeveste JA, Montini J, Gere JI, Cajarville C, Repetto JL, Santana A. Supplementation with a blend of essential oils, tannins, and bioflavonoids in dairy cows. II: Implications for methane emission reduction. J Dairy Sci. 2025;108(Suppl_1):423.
  65. Mizrahi I, Wallace RJ, Moraïs S. The rumen microbiome: Balancing food security and environmental impacts. Nat Rev Microbiol. 2021 Sep;19(9):553-66. Go to original source... Go to PubMed...
  66. Montes F, Meinen R, Dell C, Rotz A, Hristov AN, Oh J, Waghorn G, Gerber PJ, Henderson B, Makkar HP, Dijkstra J. Special topics - Mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options. J Anim Sci. 2013 Nov;91(11):5070-94. Go to original source... Go to PubMed...
  67. Morgavi DP, Forano E, Martin C, Newbold CJ. Microbial ecosystem and methanogenesis in ruminants. Animal. 2010 Jul;4(7):1024-36. Go to original source... Go to PubMed...
  68. Munoz C, Letelier PA, Ungerfeld EM, Morales JM, Hube S, Perez-Prieto LA. Effects of pregrazing herbage mass in late spring on enteric methane emissions, dry matter intake, and milk production of dairy cows. J Dairy Sci. 2016 Oct;99(10):7945-55. Go to original source... Go to PubMed...
  69. Myhre G, Shindell D, Breon FM, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque JF, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H. Anthropogenic and natural radiative forcing. In: Climate change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change [Internet]. Cambridge (UK): Cambridge University Press; 2013. p. 659-740 [cited 2026 Jan 20]. Available from: https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter08_FINAL.pdf.
  70. NASEM - National Academies of Sciences, Engineering, and Medicine. Nutrient requirements of dairy cattle: Eighth revised edition. Washington, DC: The National Academies Press; 2021. 502 p.
  71. Norton T, Chen C, Larsen MLV, Berckmans D. Review: Precision livestock farming: Building "digital representations" to bring the animals closer to the farmer. Animal. 2019 Dec;13(12):3009-17. Go to original source... Go to PubMed...
  72. Olijhoek DW, Lovendahl P, Lassen J, Hellwing ALF, Hoglund JK, Weisbjerg MR, Noel SJ, McLean F, Hojberg O, Lund P. Methane production, rumen fermentation, and diet digestibility of Holstein and Jersey dairy cows being divergent in residual feed intake and fed at 2 forage-to-concentrate ratios. J Dairy Sci. 2018 Nov;101(11):9926-40. Go to original source... Go to PubMed...
  73. Owen JJ, Silver WL. Greenhouse gas emissions from dairy manure management: A review of field-based studies. Glob Chang Biol. 2015 Feb;21(2):550-65. Go to original source... Go to PubMed...
  74. Papakonstantinou GI, Voulgarakis N, Terzidou G, Fotos L, Giamouri E, Papatsiros VG. Precision livestock farming technology: applications and challenges of animal welfare and climate change. Agriculture (Basel). 2024 Apr:14(4):620. Go to original source...
  75. Parker D, Ham J, Woodbury B, Cai L, Spiehs M, Rhoades M, Trabue S, Casey K, Todd R, Cole A. Standardization of flux chamber and wind tunnel flux measurements for quantifying volatile organic compound and ammonia emissions from area sources at animal feeding operations. Atmos Environ. 2013 Feb;(66):72-83. Go to original source...
  76. Pereira JF, Zhang J, Jessup R, Jones CS. Editorial: Forage crop improvement for improved livestock production and nutrition. Front Plant Sci. 2022 Dec 5;13:1082873. Go to original source... Go to PubMed...
  77. Petersen SO, Blanchard M, Chadwick D, Del Prado A, Edouard N, Mosquera J, Sommer SG. Manure management for greenhouse gas mitigation. Animal. 2013 Jun;7(Suppl_2):266-82. Go to original source... Go to PubMed...
  78. Pfrombeck J, Gandorfer M, Zeiler E, Ettema J. An economic evaluation of sensor-assisted health monitoring in dairy farming using the example of a rumen bolus. J Dairy Sci. 2025 Mar;108(3):2573-94. Go to original source... Go to PubMed...
  79. Pulina G, Francesconi AHD, Stefanon B, Sevi A, Calamari L, Lacetera N, Dell'Orto V, Pilla F, Marsan PA, Mele M, Rossi F, Bertoni G, Crovetto GM, Ronchi B. Sustainable ruminant production to help feed the planet. Ital J Anim Sci. 2017;16(1):140-71. Go to original source...
  80. Pupo MR, Ferraretto LF, Nicholson CF. Effects of feeding 3-nitrooxypropanol for methane emissions reduction on income over feed costs in the United States. J Dairy Sci. 2025 May;108(5):5061-75. Go to original source... Go to PubMed...
  81. Roessler R, Chefor F, Schlecht E. Using a portable laser methane detector in goats to assess diurnal, diet- and position-dependent variations in enteric methane emissions. Comput Electron Agric. 2018 Jul;(150):110-7. Go to original source...
  82. Rossi CAS, Grossi S, Dell'Anno M, Compiani R, Rossi L. Effect of a blend of essential oils, bioflavonoids and tannins on in vitro methane production and in vivo production efficiency in dairy cows. Animals (Basel). 2022 Mar 14;12(6):728. Go to original source... Go to PubMed...
  83. Rotz CA. Modeling greenhouse gas emissions from dairy farms. J Dairy Sci. 2018 Jul;101(7):6675-90. Go to original source... Go to PubMed...
  84. Sherman JF, Young EO, Jokela WE, Cavadini J. Impacts of low-disturbance dairy manure incorporation on ammonia and greenhouse gas fluxes in a corn silage-winter rye cover crop system. J Environ Qual. 2021 Jul;50(4):836-46. Go to original source... Go to PubMed...
  85. Sommer SG, Clough TJ, Balaine N, Hafner SD, Cameron KC. Transformation of organic matter and the emissions of methane and ammonia during storage of liquid manure as affected by acidification. J Environ Qual. 2017 May;46(3):514-21. Go to original source... Go to PubMed...
  86. Spoliansky R, Edan Y, Parmet Y, Halachmi I. Development of automatic body condition scoring using a low-cost 3-dimensional Kinect camera. J Dairy Sci. 2016 Sep;99(9):7714-25. Go to original source... Go to PubMed...
  87. Stevenson JS, Hill SL, Nebel RL, DeJarnette JM. Ovulation timing and conception risk after automated activity monitoring in lactating dairy cows. J Dairy Sci. 2014 Jul;97(7):4296-308. Go to original source... Go to PubMed...
  88. Strapak P, Michakova M, Strapakova E, Neirurerova P, Bujko J. Influence of oestrus on changes of locomotion activity and rumination time in cattle dams. Acta Fytotech Zootech. 2021;(24):127-30. Go to original source...
  89. Studer E, Alsaood M, Steiner A, Becker J. Application note for the use of a wireless device measuring reticular pH under practice conditions in a Swiss dairy herd. Smart Agric Technol. 2023 Aug;(4):100170. Go to original source...
  90. Szumacher-Strabel M, Potkanski A, Kowalczyk J, Cieslak A, Czauderna M, Gubala A, Jedroszkowiak P. The influence of supplemental fat on rumen volatile fatty acid profile, ammonia and pH levels in sheep fed a standard diet. J Anim Feed Sci. 2002;11(4): 577-87. Go to original source...
  91. Tedeschi LO, Abdalla AL, Alvarez C, Anuga SW, Arango J, Beauchemin KA, Becquet P, Berndt A, Burns R, De Camillis C, Chara J, Echazarreta JM, Hassouna M, Kenny D, Mathot M, Mauricio RM, McClelland SC, Niu M, Onyango AA, Parajuli R, Pereira LGR, Del Prado A, Paz Tieri M, Uwizeye A, Kebreab E. Quantification of methane emitted by ruminants: A review of methods. J Anim Sci. 2022 Jul 1;100(7):skac197. Go to original source... Go to PubMed...
  92. Thompson LR, Rowntree JE. Invited review: Methane sources, quantification, and mitigation in grazing beef systems. Appl Anim Sci. 2020;36(5):556-73. Go to original source...
  93. Tuyttens FAM, Molento CFM, Benaissa S. Twelve threats of precision livestock farming (PLF) for animal welfare. Front Vet Sci. 2022 May 27;9:889623. Go to original source... Go to PubMed...
  94. USDA. Recommended protocol for using the GreenFeed system to measure gas exchange from cattle as part of the GHG quantification project [Internet]. [place unknown]: United States Department of Agriculture; 2024 Nov 25 [cited 2025 Jan 15]. Available from: https://www.ars.usda.gov/ARSUserFiles/np212/Greenhouse/GHG%20Research%20Network%20-%20enteric%20GreenFeed%20protocol%20final.pdf.
  95. Vakulya G, Hajnal E, Udvardy P, Simon G. In-depth development of a versatile rumen bolus sensor for dairy cattle. Sensors (Basel). 2024 Oct 30;24(21):6976. Go to original source... Go to PubMed...
  96. van Breukelen AE, de Haas Y, Aldridge MN, Meijer N, Veerkamp RF. Genetic relationships among methane emissions from breath, dry matter intake, body weight, and milk production traits of Dutch dairy cows. J Dairy Sci. 2025 Jul;108(7):7278-96. Go to original source... Go to PubMed...
  97. van Lingen HJ, Crompton LA, Hendriks WH, Reynolds CK, Dijkstra J. Meta-analysis of relationships between enteric methane yield and milk fatty acid profile in dairy cattle. J Dairy Sci. 2014 Nov;97(11):7115-32. Go to original source... Go to PubMed...
  98. Vechi NT, Falk JM, Fredenslund AM, Edjabou ME, Scheutz C. Methane emission rates averaged over a year from ten farm-scale manure storage tanks. Sci Total Environ. 2023 Dec 15;904:166610. Go to original source... Go to PubMed...
  99. Vladimirov F, Bazaev SO, Khakimov AR. [Comparison of in-rumen systems for monitoring the physiological state of cattle]. Agric Mach Technol. 2023 Jun;17(2):35-9. Russian. Go to original source...
  100. von Soosten D, Meyer U, Flachowsky G, Danicke S. Dairy cow health and greenhouse gas emission intensity. Dairy. 2020 Mar 23;1(1):20-9. Go to original source...
  101. Voulgarakis N, Gougoulis D, Psalla D, Papakonstantinou G, Katsoulos PD, Katsoulis K, Angelidou-Tsifida M, Athanasiou L, Papatsiros V, Christodoulopoulos G. Can computerized rumen mucosal colorimetry serve as an effective field test for managing subacute ruminal acidosis in feedlot cattle? Vet Res Commun. 2024 Feb;48(1):475-84. Go to original source... Go to PubMed...
  102. Wall E, Simm G, Moran D. Developing breeding schemes to assist mitigation of greenhouse gas emissions. Animal. 2010 Mar;4(3):366-76. Go to original source... Go to PubMed...
  103. Waters SM, Roskam E, Smith PE, Kenny DA, Popova M, Eugene M, Morgavi DP. International Symposium on Ruminant Physiology: The role of rumen microbiome in the development of methane mitigation strategies for ruminant livestock. J Dairy Sci. 2025 Jul;108(7):7591-606. Go to original source... Go to PubMed...
  104. Wattiaux MA, Uddin ME, Letelier P, Jackson RD, Larson RA. Invited review: Emission and mitigation of greenhouse gases from dairy farms: The cow, the manure, and the field. Appl Anim Sci. 2019 Apr;35(2):238-54. Go to original source...
  105. Weir C, Duncan ZM, Spore TJ, Corrigan ME, Trigeneyer EC, Ellis WC, Hollenbeck WR, Blasi DA. Evaluation of in-dwelling pH monitoring technologies. J Anim Sci. 2024 Sep 13;102(Suppl_3):350-1. Go to original source...
  106. Wims CM, Deighton MH, Lewis E, O'Loughlin B, Delaby L, Boland TM, O'Donovan M. Effect of pregrazing herbage mass on methane production, dry matter intake, and milk production of grazing dairy cows during the mid-season period. J Dairy Sci. 2010 Oct;93(10):4976-85. Go to original source... Go to PubMed...
  107. Xuan T, Zheng T, Li T, Wu B, Li T, Bao W, Qin W. The effects of different doses of 3-NOP on ruminal fermentation parameters, methane production, and the microbiota of lambs in vitro. Fermentation. 2024 Aug 23;10(9):440. Go to original source...
  108. Zaninelli M, Redaelli V, Luzi F, Bronzo V, Mitchell M, Dell'Orto V, Bontempo V, Cattaneo D, Savoini G. First evaluation of infrared thermography as a tool for the monitoring of udder health status in farms of dairy cows. Sensors (Basel). 2018 Mar 14;18(3):862. Go to original source... Go to PubMed...
  109. Zimmerman PR, inventor; Zimmerman PR, assignee. System for measuring metabolic gas emissions from animals. United States patent US 5,265,618. 1993 Nov 23.
  110. Zimmerman PR, Zimmerman RS, inventors; C-Lock Inc, assignee. Method and system for monitoring and reducing ruminant methane production. United States patent US 8,307,785 B2. 2012 Nov 13.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.