Res. Agr. Eng., X:X | DOI: 10.17221/101/2025-RAE

Modelling the hydration process of wheat grain  with layer-dependent diffusion coefficientsOriginal Paper

Bakhtiyar Ismailov ORCID...1,2, Abdushukur Urinboev ORCID...2, Khairulla Ismailov ORCID...1, Akmaljon Kuchkarov ORCID...2
1 Department of Information Systems and Modelling, Faculty of Information Technologies and Energy, M. Auezov South Kazakhstan University, Shymkent, Kazakhstan
2 Department of Electronics and Instrumentation, Faculty of Energy Engineering and Technology, Fergana State Technical University, Fergana, Uzbekistan

This study develops and validates a multilayer diffusion model of wheat grain hydration that incorporates layer-dependent diffusion coefficients for bran, endosperm, and germ. The moisture transport is formulated using Fick’s law with two interface formulations: (i) classical continuity of the concentration and flux and (ii) an interlayer resistance formulation that permits concentration discontinuities. Diffusion coefficients and geometric parameters were determined experimentally; A 3D grain model (structured-light scanning, COMSOL Multiphysics) informed the computational domain. Numerical solutions combined eigenfunction expansions with finite-difference discretisation near the interfaces. Across eight winter wheat varieties, the diffusion coefficients spanned 11.6 – 20.5 × 10–12m2·s–1 (mean 16.27 ± 3.08 × 10–12m2·s–1 ). Relative to the continuity model, the resistance model reduced the early-stage endosperm over-prediction by ~ 0.6–1.0 % (absolute) and lowered the whole-grain RMSE by ~ 20–30% over 0–240 min. These results support the role of thin moisture-retaining films as active barriers and yield smooth, real-time-ready outputs suitable for the automated control of pre-milling hydration; the framework is extensible to full 3D transient simulations.

Keywords: grain hydration; interlayer resistance; multilayer model; moisture transport; COMSOL Multiphysics; modelling; micropyle

Received: July 4, 2025; Accepted: December 4, 2025; Prepublished online: January 27, 2026 

Download citation

References

  1. Amann H. (1995): Linear and Quasilinear Parabolic Problems. Vol. I: Abstract Linear Theory. Birkhäuser, Basel. Go to original source...
  2. Anders A. (2023): Modeling the shape of wheat kernels with the use of solids of revolution. Agricultural Engineering, 27: 187-202. Go to original source...
  3. Barrer G.N., Mendez-Mendez J., Arzate-Vazquez I., Calderón-Domínguez G., Ribotta P.D. (2019): Nano- and micromechanical properties of wheat grain by atomic force microscopy (AFM) and nano-indentation (IIT). Journal of Cereal Science, 90: 102830. Go to original source...
  4. Bharathi V.S.K., Jian F., Jayas D.S. (2023): Study on 300 t of wheat stored in corrugated steel bin for two years in Canada. Part I - Temperature and moisture profiles of the grain. Journal of Stored Products Research, 100: 102057. Go to original source...
  5. Cao W., Li G., Song H., Quan B., Liu Z. (2024): Research on grain moisture model based on improved SSA-SVR algorithm. Applied Sciences, 14: 3171. Go to original source...
  6. da Silva W.P., de Lima A.G.B., Pereira J.C.A., Gomes J.P., Queiroz A.J.d.M., de Figueirêdo R.M.F., Paiva Y.F., dos Santos F.S., de Melo B.A., Moura H.V. Silva E.T. de V., Freire da Silva Júnior A., de Souto L.M. (2024): A diffusion model to describe water absorption by red rice during soaking: Variable mass diffusivity, variable volume, use of boundary fitted coordinates. Processes, 12: 1696. Go to original source...
  7. Dimech A., Bussière B., Cheng L., Chouteau M., Fabien-Ouellet G., Chevé N., Isabelle A., Wilkinson P., Meldrum P., Chambers J. (2024): Monitoring moisture dynamics in multi-layer cover systems for mine tailings reclamation using autonomous and remote time-lapse electrical resistivity tomography. Canadian Geotechnical Journal, 61: 1234-1250. Go to original source...
  8. Huang C., Qin Z., Hua X., Zhang Z., Xiao W., Liang X., Song P., Yang W. (2022): An intelligent analysis method for 3D wheat grain and ventral sulcus traits based on structured light imaging. Frontiers in Plant Science, 13: 840908. Go to original source... Go to PubMed...
  9. Ismailov B., Ismailov Kh., Urmatova A., Koyshieva T. (2013): Mathematical modeling, dynamic and mass-transfer calculation of gas-drop mixture in the mass-transfer apparatus multistage channels. Applied Mathematical Sciences, 8: 4561-4570. Go to original source...
  10. Ismailov B., Umarova Zh., Ismailov Kh., Dosmakanbetova A., Meldebekova S. (2021): Mathematical modeling and algorithm for calculation of thermocatalytic process of producing nanomaterial. Indonesian Journal of Electrical Engineering and Computer Science, 23: 1590-1601. Go to original source...
  11. Jia F., Zhou X., Chen F. (2015): The calculations and simulation testing on the elastic modulus of wheat. Interdisciplinary Sciences: Computational Life Sciences, 7: 200-204. Go to original source... Go to PubMed...
  12. Kang C., Zhang G., Zhang Q., Mu G., Guo H., Yuan T., Li R., Li X., Zhao C. (2024): Control of multi-energy drying system: Optimal weighted combination prediction of moisture content and fuzzy compensation of wind speed. Thermal Science and Engineering Progress, 50: 102503. Go to original source...
  13. Khalid A., Hameed A., Tahir M. (2023): Wheat quality: A review on chemical composition, nutritional attributes, grain anatomy, types, classification, and function of seed storage proteins in bread making quality. Frontiers in Nutrition, 10: 1053196. Go to original source... Go to PubMed...
  14. Khan T., Jamil M., Ali A., Rasheed S., Irshad A., Maqsood M.F., Zulfiqar U., Chaudhary T., Ali M.A., Elshikh M.S. (2024): Exploring water-absorbing capacity: A digital image analysis of seeds from 120 wheat varieties. Scientific Reports, 14: 6757. Go to original source... Go to PubMed...
  15. Ladyženskaja O.A., Solonnikov V.A., Ural'ceva N.N. (1968): Linear and Quasi-Linear Equations of Parabolic Type. Providence, American Mathematical Society. Go to original source...
  16. Le T.D.Q., Alvarado C., Girousse C., Legland D., Chateigner-Boutin A.-L. (2019): Use of X-ray micro computed tomography imaging to analyze the morphology of wheat grain through its development. Plant Methods, 15: 102. Go to original source... Go to PubMed...
  17. Li C., Chen G., Tilley M., Chen Y., Li Y. (2023): Comparing bread-making properties of white and whole wheat flours from 64 different genotypes: A correlation analysis. Journal of Cereal Science, 114: 103793. Go to original source...
  18. Lions J.-L., Magenes E. (1972): Non-Homogeneous Boundary Value Problems and Applications. Vol. I. Berlin, Springer Go to original source...
  19. Liu Y., Jia Z., Li M., Bian K., Guan E. (2023): Heat treatment of wheat for improving moisture diffusion and the effects on wheat milling characteristics. Journal of Cereal Science, 114: 103806. Go to original source...
  20. Mazumdar J. (1999): The mathematics of diffusion. In: An Introduction to Mathematical Physiology and Biology. Cambridge Studies in Mathematical Biology. Cambridge, Cambridge University Press: 12-37. Go to original source...
  21. Müller A., Nunes M.T., Maldaner V., Coradi P.C., de Moraes R.S., Martens S., Leal A.F., Pereira V.F., Marin C.K. (2022): Rice drying, storage and processing: Effects of post-harvest operations on grain quality. Rice Science, 29: 16-30. Go to original source...
  22. Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. (2010): NIST Handbook of Mathematical Functions. Cambridge, Cambridge University Press and National Institute of Standards and Technology.
  23. Rathjen J.R., Strounina E.V., Mares D.J. (2009): Water movement into dormant and non-dormant wheat (Triticum aestivum L.) grains. Journal of Experimental Botany, 60: 1619-1631. Go to original source... Go to PubMed...
  24. Sharma S., Semwal A.D., Govind Raj T., Wadikar D. (2024): Hydration behaviour and kinetic studies of paddy cultivars: Optimization of process variables for improved physical, milling and textural properties. Journal of Food Science and Technology, 61: 1662-1674. Go to original source... Go to PubMed...
  25. Singh R.P., Heldman D.R. (2009): Steady-state diffusion of gases (and liquids) through solids. In: Introduction to Food Engineering. 4th Ed., Burlington, Academic Press: 595-616.
  26. Steidle Neto A.J., de Carvalho Lopes D. (2015): Thermistor based system for grain aeration monitoring and control. Computers and Electronics in Agriculture, 116: 45-54. Go to original source...
  27. Tasso I. de S., Nascimento K.M., Jorge L.M. de M., Jorge R.M.M. (2024): Black oat, rye, and wheat cereals: Kinetics and changes during hydrothermal processing. Acta Scientiarum. Technology, 47: e69773. Go to original source...
  28. Urinboev A.A., Ismailov B.R., Kalandarov P.I., Ismailov K.B. (2025): Software for implementing a mathematical model of moisture distribution during grain preparation based on coordinates and time. Certificate of State Registration of Software No. DGU 46925. Tashkent, Ministry of Justice of the Republic of Uzbekistan.
  29. Vlasák P., Kholpanov L., Ismailov B. (2005): Modeling of multiphase flow containing bubbles, drops and solid particles. Engineering Mechanics, 12: 441-451.
  30. Voicu E.M., Tudosie T., Ungureanu N. (2013): Some mechanical characteristics of wheat seeds obtained by uniaxial compression tests. UPB Scientific Bulletin, Series D: Mechanical Engineering, 75: 265-278.
  31. Yigit E., Aksoy A., Duysak H., Işiker H. (2024): Detection of moisture of flowing grain with a novel deep learning structure using 2D spectrogram data. Computers and Electronics in Agriculture, 224: 109180. Go to original source...
  32. Zhao X., Wei X., Wang H., Liu X., Zhang Y., Zhang H. (2023): Discrepancy of effective water diffusivities determined from dynamic vapor sorption measurements with different relative humidity step sizes: Observations from cereal materials. Foods, 12: 1470. Go to original source... Go to PubMed...
  33. Zhou Y., Shang W., Hui Y., Shi C., Gao J., Zhang Y., Liu J., Cheng D., Zhu K. (2023): Construction of an accurate wheat-grain model based on X-ray tomography and bonding parameters by discrete element. Applied Sciences, 13: 9265. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.