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Abstract: The study aims to  analyse the impact of  application of  chemical inputs like fertilisers or  crop protection 
products on farm crop yield productivity in Estonian and Slovenian agriculture. We combined the propensity score 
matching (PSM) method with an inverse probability weighted regression (IPWRA) model to derive treatment effects 
of the adoption of these critical inputs using Farm Accountancy Data Network data. Results exhibit consistency across 
estimation techniques. Estimates of both IPWRA and PSM models showed that adoption of at least one of the chemi-
cal inputs decreases volatility of crop yield output and downside risk. The results are more robust for Estonian than for 
Slovenian farms suggesting on possible impacts of other exogenous factors such as climate change on mitigating the 
crop yield downside risk.
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Unexpectedly lower crop yield outcomes or down-
side risks challenge farmers' use of external inputs that 
can enhance crop productivity (Möhring et al. 2020). 
Agriculture crop farm income risk is  determined 
by  various factors particularly crop yield instabil-
ity, price volatility and cost risk (El Benni and Finger 
2014). The bibliometric analysis regarding risk in agri-
culture has revealed that literature has focused on the 
impacts of climate and food security, and the insur-
ance schemes in agriculture (Novickytė 2019). Most 
recently the farm sector has been affected by a chang-
ing set of  risk sources including more unusual and 
extremely adverse weather patterns. This induces the 
need for assessments and adjustments in  risk man-
agement tools.

Our focus is on crop yield downside risks, which can 
be caused by various factors related to input uses, agri-
cultural natural factor endowments, climate change and 
risk management in  crop production and agriculture. 
The conditions for crop production are negatively deter-
mined by a high level of risk in agriculture, particularly 
in crop production, due to climate change and the re-
sulting extreme weather conditions. They increase the 
likelihood of natural disasters, which is reflected in the 
quantity and quality of  crop production. The ability 
of early detection and effective management of the risks 
at  the farm level is  important for crop market trends 
in  monitoring and decision-making of  the price risk, 
production or income risk with the diversification as the 
farm's risk management strategy (Jankelova et al. 2017).
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This article aims to investigate the impacts of chem-
ical input adoption on crop yield downside risk by ap-
plying propensity score matching (PSM) and inverse 
probability weighted regression adjustment (IPWRA) 
estimation procedures. Estonia and Slovenia are select-
ed as the case studies, both being members of the Com-
mon Agricultural Policy (CAP) of the European Union. 
Both countries aim to prevent the impacts of climate 
change by  reducing crop yields' sensitivity to  climate 
change. Slovenian agriculture has suffered the greatest 
damage from drought, heavy rainfall, floods, hail and 
windstorms, frost, snow, glaze ice, and weather-related 
diseases and pests (MAFF 2023). The natural-climatic 
conditions regarding drought in Estonia as a Northern 
EU country might be better than in Slovenia as the latter 
is situated in the Central-Southern EU geographic area 
in the mixture between Pannonian and Mediterranean 
and partly Alpine climatic conditions. The cross-coun-
try comparison represents a novel contribution to mit-
igation or reduction measures addressing the crop yield 
risks and adaptation of  crop production to  changing 
conditions. Stabilisation of crop yields can be import-
ant for the stability of the income situation of farms.

The CAP considers risk management by  promoting 
and co-financing the implementation of climate change 
adaptation and mitigation measures through the Rural 
Development Programme (Ministry of Agriculture, For-
estry and Food 2024) or other programmes or projects 
in the field of agriculture (European Commission 2017). 
Among the main challenges is the introduction of new, 
innovative approaches to maintain or increase produc-
tivity levels while also successfully adapting to climate 
change and its vulnerability (Gancheva et al. 2020).

Technology adoption on  reducing crop yield risk 
has been investigated in agricultural economics, most 
recently particularly with climate change (Santeramo 
et  al.  2024). The econometric modelling of  frontier 
production functions has been an important area of re-
search in  agricultural economics (Battese 1992; Bat-
tese and Coelli 1992; Čechura et al. 2022). While there 
are studies on  the productivity and efficiency of  crop 
farms (Błażejczyk-Majka et al. 2012; Biagini et al. 2023; 
Makieła et al. 2025), to our knowledge, there have not 
been any quantitative farm-level micro-econometric 
studies that examined whether crop yield output has 
been impacted with the adoption of agricultural tech-
nologies such as fertilisers and/or pesticides in Estonia 
and Slovenia. From a policy perspective, this is crucial 
since crop yield output is expected to require improve-
ment in the level of  farming practices adoption in ag-
riculture. However, the literature does not provide 

straightforward answer both for risk preferences from 
crop protection products use in agriculture (Bontemps 
et al. 2021) and the welfare effects of crop biodiversity 
(Bozzola and Smale 2020).

This paper attempts to fill this gap by assessing the ef-
fect of the adoption at least one chemical input (ALO-
CI) like crop protection products or fertilisers on crop 
yield productivity using micro-level panel data ob-
tained from Farm Accountancy Data Network (FADN) 
in two EU countries. Precisely, we use the PSM and the 
doubly robust IPWRA models to estimate the average 
treatment effects.

MATERIAL AND METHODS

Estimating the moments of  the stochastic produc-
tion function 

The probability distribution of the stochastic produc-
tion function is  evaluated by  using a  moment-based 
approach (Antle 1983), allowing for flexible represen-
tation of  production risks, considered the following 
specification for y: 

where: Yi – eligible crop yield output; Xi – a  vector 
of  production inputs (i.e.  fertilisers, crop protection 
products, other intermediate consumption, labour, 
capital and land); βi – a vector of parameters, ui – the 
identically independently distributed error term; i = 1, 
..., N – individual farms in the sample.

Econometrically, the translog production function 
is specified as follows:

where: ln(Yi) – the natural logarithm of the total crop 
yield output for farmer i; ln(Xin) – the natural logarithm 
of n input for farmer i; ln(Xin)ln(Xim) – the interaction 
between inputs n and m, the inputs include other inter-
mediate consumption, total assets, land, labour, fertilis-
ers, and crop protection.

Because some farmers in our sample did not purchase 
fertilisers and crop protection products in  the 2013–
2021 years, the two input variables have zero-value 
observations. Since zero values are unsuitable for mod-
elling in logarithm form [Equation(2)], we follow Villa-
no et al. (2015), Zheng et al. (2021) and Ma et al. (2022) 

( ) ,i i i iY f X u= β +

( ) ( ) ( ) ( )
6 6 6

0
1 1 1

ln ln 0.5 ln lni n in nm in im i
n n m

Y X X X u
= = =

= β + β + β +∑ ∑∑

(1)

(2)
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by replacing zero values with one to deal with zero val-
ues. Because ln(1) = 0, this allows not to omit such val-
ues from the analysis. Since prices and crop yields are 
key factors influencing farmers' decisions, out-of-range 
values (including negative or extreme outliers) or zeros 
are unsuitable for modelling (Louhichi 2018). Therefore, 
in our analysis, we excluded negative crop output val-
ues as outliers. Equation (2) is estimated by an ordinary 
least squares (OLS) regression model to  calculate the 
first three moments, i.e. expected crop yield, its variance 
and skewness (Huang et al. 2015; Issahaku and Abdulai 
2020). Specifically, the expected crop yield is predicted 
as  ( )(ln )iE Y . 

The second moment represents the variance of crop 
yield, which is measured by the squared term of the er-
ror term, that is, ( )2

iE ε . The third moment represents 
the downside risk (skewness) of  crop yield, which 
is measured by the third power of the error term, that 
is, ( )3

iE ε  (Ma et al. 2022).

Estimation strategy
We assume that a risk-neutral and utility-maximising 

crop farmer i chooses to adopt at least one from criti-
cal inputs if the utility derived from using them exceeds 
that of otherwise (Olagunju et al. 2023). We can express 
farmer's i adoption decision by a latent variable *

iF  as:

where: Fi – a  binary variable representing adoption 
status (1  =  adopters, 0  =  non-adopters); Zi – a  set 
of farmer characteristics and farm-level factors hypoth-
esised to influence input use decisions; iε  – the error 
term assumed to  be  normally distributed;  iθ – the 
unknown parameters.

To estimate the impact of ALOCI on the crop yield 
productivity we explored the propensity score matching 
(PSM) and inverse probability weighted regression ad-
justment (IPWRA) to produce unbiased and consistent 
estimates. The PSM controls for selection bias by con-
trolling for observable confounding factors. However, 
an important shortcoming of the PSM method is its in-
ability to deal with biases resulting from unobservable 
characteristics of sampled units. Thus, we employed IP-
WRA estimator. According to Imbens and Wooldridge 
(2009), IPWRA contributes to research which isolates 
the effects of  exposure, as  the technique adjusts both 
for the predictors of  intervention and for the effects 
of these predictors. 

Propensity score matching (PSM)
The propensity score matching method (PSM) 

is a quasi-experimental technique often used in ob-
servational causal studies (Adjin et al. 2020). We es-
timate the average treatment effect on  the treated 
(ATT) of  critical inputs used on  the expected crop 
yield, crop yield variance and crop yield skewness 
using the PSM model (package 'MatchIt', Sekhon 
2011). Following Sseguya et al. (2020), the ATT can 
be defined as:

where: E(.) – the expectation operator; Φ1i– the outcome 
of the household's crop yield that is adopted; Φ0i– the 
outcome of a household's crop yield that did not adopt.

However, ATT from PSM can still produce biased 
results in the presence of misspecification in the pro-
pensity score model (Robins et  al.  2007; Wooldridge, 
2010; Wossen et al. 2017). A potential remedy for such 
misspecification bias is to use IPWRA. 

Inverse probability weighted regression (IPWRA) 
model 

IPWRA (using packages 'twang' and 'survey' in  R) 
estimator has the double-robust property that en-
sures consistent results as  it  allows the outcome and 
the treatment model to  account for misspecification. 
ATT in the IPWRA model was estimated in two steps 
(Imbens and Wooldridge 2009). In the first step, we es-
timated the propensity scores using multinomial logit 
regression and in the second step, linear regression was 
used to estimate the ATT which was computed as fol-
lows (Kazal et al. 2020):

where: γ1, η1 – estimated inverse probability-weighted 
parameters for adopters; γ0, η0 – estimated inverse prob-
ability-weighted parameters for non-adopters; NA – the 
total number of adopters.

To evaluate how sensitive the estimated treatment 
effects are to  potential hidden bias, sensitivity anal-
ysis was conducted using the 'psens' function from 
the 'rbounds' package in  R  to  assess the robustness 
of treatment effects to unobserved confounders. The 
'psens' function implements the Rosenbaum bounds 
approach to  evaluate how sensitive the estimated 

*
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treatment effects are to potential hidden bias. To test 
for heterogeneity in treatment effects (HTE), we con-
ducted an analysis using interaction terms in our re-
gression models.

Data and descriptive statistics
Data. The analysis is  based on  the Estonian and 

Slovenian FADN panel datasets. FADN is  a  database 
for a  stratified sample of  farms across EU countries. 
This paper focuses on  specialist crop farms. The EU 
Types of  crop farms are: (15)  specialist cereals, oil-
seeds and protein crops (COP); (16)  specialist other 
field crops; (20)  specialist horticulture; (36)  specialist 
orchards  –  fruits; (38)  permanent crops combined; 
(60) mixed crops (European Commission 2022). 

We used FADN SE variables codes: SE010 – labour 
hours used on  the farm, measured as  total number 
of  hours worked; SE025 – total utilised agricultural 
area (UAA) in  hectares (ha); SE030 – leased UAA 
in ha; SE131 – total crop production; SE275 – total in-
termediate consumption; SE436 – total assets; SE295 
– fertiliser expenditures; SE300 – crop protection 
expenditures; SE410 – gross farm income. For defla-
tion of monetary data in EUR, the agricultural input 
price index (IA148) and agricultural output price in-
dex (IA146) were taken from Statistics Estonia (2021) 
and the Statistical Office of the Republic of Slovenia 
(2021); 2015 is a base year. 

The crop yield output is calculated as the ratio of to-
tal crop production over total UAA (SE131/SE025, 
SE131 is  deflated by  index IA146 output). Other in-
termediate consumption (OIC) was calculated as  the 
difference between total intermediate consumption 
and both critical inputs: fertilisers and pesticides 
(OIC  =  SE275  –  SE295  –  SE300) and deflated by  in-
dex IA148 input. Total assets (TA), SE436, is deflated 
by index IA148 input. Land is SE025, total UAA in ha. 
Labour is  calculated as  the ratio of  SE010 over total 
UAA: SE010/SE025. The use of fertilisers is calculated 
as a ratio SE295 deflated by index (IA148 input) for fer-
tilisers over SE025 (ha). The use of pesticides is calcu-
lated as a ratio SE300 deflated by index IA148 input for 
pesticides over SE025 (ha). 

In the FADN database, the farm type and econom-
ic size of farm households is determined based on the 
value of  the standard output (SO) (Eurostat 2023). 
In the empirical estimation, economic size classes (that 
range from 3 to  14) are used as  an  indicator of  farm 
size. Farms with SO EUR  4  000‒8  000 belong to  size 
class 3, and farms with SO above EUR 3 000 000 belong 
to size class 14.

We used the age of the farm owner or farm manager 
if the head of a farm or farm owner was not a manager.

Tenure is calculated as a ratio of difference between 
total UAA (SE025) and leased UAA (SE030) to  total 
UAA (SE025). Income per ha is  calculated as  a  ratio 
of gross farm income SE410 over SE025.

The major outcome indicator was crop yield output, 
which is expressed in natural logarithm.

Descriptive statistics. Table  1 presents the vari-
ables' means and compares these for the adopters and 
non-adopters. The t-test values indicating the mean 
differences between adopters and non-adopters sug-
gest that there are – except for land tenure in  both 
countries and head of  farm age and farm income 
in  Slovenia – statistically significant differences be-
tween adopters and non-adopters in  crop yield out-
put and the used inputs concerning terms of observed 
characteristics. These notable differences are largely 
in  favour of adopters' farms, which denotes that the 
adoption would generate a selection bias issue in our 
estimation. 

RESULTS AND DISCUSSION

Following Ma et  al.  (2022), we  utilised the likeli-
hood ratio test (LR) and Akaike Information Cri-
terion (AIC) value to  identify the most appropriate 
functional form. The production functions are es-
timated by  the translog specification [Equation (2)] 
and Cobb–Douglas specification. The results indicate 
that the translog specification is  preferred (Supple-
mentary Table S1).

Table 2 presents the logit regression model estimates 
of Equation (3), reporting the determinants of critical 
inputs used. Labour resources and assets increase the 
likelihood of ALOCI for Estonian and Slovenian farm-
ers. Whereas the head of farm age decreases the likeli-
hood of ALOCI for Estonian farmers. 

Following (Ma et  al.  2022), we  estimate the treat-
ment effects of  the critical inputs using on expected 
crop yield, crop yield variance and crop yield skew-
ness using the PSM and IPWRA models. Since the 
PSM methods are sensitive to the exact specification 
and matching method (Imbens 2004; Caliendo and 
Kopeinig 2008), we use three different matching tech-
niques: nearest neighbour matching (NNM), optimal 
matching (OM) and radius matching (RM) as  a  ro-
bustness check. Supplementary  Tables  S2 and S3 
present the matching quality test results, confirming 
the superior performance of OM for Estonia, and RM 
for Slovenia. 

https://agricecon.agriculturejournals.cz/esm/298/2024-AGRICECON/1.pdf
https://agricecon.agriculturejournals.cz/esm/298/2024-AGRICECON/1.pdf
https://agricecon.agriculturejournals.cz/esm/298/2024-AGRICECON/1.pdf
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Table 1. The descriptive statistics of variables used: adopters vs. non-adopters and statistical t-test for Estonia and 
Slovenia

Variables
Estonia Slovenia

adopters non-adopters mean difference adopters non-adopters mean difference

Crop yield output 207.590 13.780 193.800*** 37.156 15.3197 21.840***

OIC 1 219.800 397.450 822.350*** 230.980 69.5600 161.420***

Total assets (TA) 6 813.260 2 436.930 4 376.330*** 3157.170 1 722.5300 1 434.650***

Land (UAA in ha) 324.000 109.630 214.370*** 14.390 7.2100 7.180***

Labour 0.270 0.060 0.210*** 0.190 0.1600 0.030*

Head of farm age 52.050 53.310 –1.260* 53.980 52.0700 1.910

Land tenure 0.410 0.410 0.000 0.730 0.7700 –0.040

Farm income 83.15 7.640 75.510*** 29.160 19.6500 9.500

Farm size (SO) 7.060 5.360 1.700*** 5.610 4.6300 0.980***

Fertilisers  
(expenditures) 4.030 0.000 4.030*** 2.120 0.0000 2.121***

Crop protection 
products  
(expenditures)

0.760 0.000 0.760*** 2.220 0.0000 2.220***

Expected value 0.539 0.436 0.103* 0.519 0.4800 –0.039

Variance 0.313 1.075 –0.763*** –0.054 0.4660 –0.520***

Skewness –0.467 –2.716 2.249*** 5.763 3.3050 2.458***

n 2 106 537 – 1324 60 –

*** and *significance at 0.01 and 0.1 levels, respectively; OIC – other immediate consumption; SO – standard output; 
UAA – utilised agriculture area
Source: Authors' calculations based on FADN data

Table 2. Determinants of the use of the critical inputs: logit regression model estimates 

Variables
Estonia Slovenia

coefficients marginal effects coefficients marginal effects

Head of farm age –0.001* 
(0.001)

–0.001***
(0.001)

0.001
(0.000)

0.001
(0.000)

Income –0.000 
(0.000)

–0.000***
(0.000)

0.000 
(0.000)

0.000 
(0.000)

Assets 0.000*** 
(0.000)

0.000*** 
(0.000)

0.000** 
(0.000)

0.000**
 (0.000)

Labour 0.018** 
(0.008)

0.018* 
(0.008)

0.046 
(0.033)

0.046 
(0.033)

Land tenure 0.009 
(0.023)

0.009 
(0.023)

–0.015 
(0.021)

–0.015 
(0.021)

Constant 0.819*** 
(0.033) – 0.912*** 

(0.297) –

Number of observations 2 643 2 643 1 384 1 384

***, ** and *significance at 0.01, 0.05 and 0.10 levels, resectively; robust SEs are presented in parentheses.
Source: Authors' calculations
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Tables 3 and 4 present the results for the treatment 
effects of ALOCI on the first three moments of crop 
yield output of the PSM (second column) and the IP-
WRA estimator for Estonia and Slovenia respectively. 
Our estimates show that ALOCI increases expected 
crop yield in Estonia but decreases that in Slovenia. 
For Estonia, sensitivity analysis indicates that the 
effect on  variance is  robust to  hidden confounders, 
whereas the effect on  skewness may be  influenced 
by unobserved factors. The impact on expected crop 
yield is inconclusive, as PSM suggests no effect, while 
IPWRA finds a  small but significant effect. For Slo-
venia, sensitivity analysis confirms that the effect 
on variance is highly robust to unobserved confound-

ers, while the effect on skewness remains strong and 
reliable even in the presence of hidden bias. The insig-
nificant effect on expected yield is also robust to po-
tential confounders. The results for Slovenia suggest 
that the ALOCI is  not sufficient for risk efficiency. 
For example, in  northeast Germany risk efficien-
cy was established for the relationship of  irrigation 
of  cereals with nitrogen fertiliser (Meyer-Aurich 
et  al.  2016). In  addition, Santeramo et  al.  (2024) ar-
gue that in Southern EU geographical areas drought 
risk is more frequent for spring-summer crops which 
points to  the need to  reform policies and strategies 
of  crop insurance schemes to  increase farms' resil-
ience to weather shocks.

Table 3. PSM and IPWRA model estimates for Estonia

Outcomes ATT (PSM) ATT (IPWRA) Sensitivity analysis Heterogeneity  
treatment effect (HTE)

Expected crop yield 0.097 (0.113)
(–0.023, 0.222) 

0.278** (0.128)
(0.026, 0.531)

no effect 
(P = 0.999)

varies by labour  
and tenure

Crop yield variance –0.601*** (0.103)
(–0.711, –0.494)

–0.545*** (0.098)
(–0.740, –0.351)

strong effect 
(P = 0.000)

varies by income  
and labour

Crop yield skewness 1.868*** (0.347)
(1.526, 2.211)

1.823*** (0.302)
(1.228, 2.418)

no effect 
(P = 1.000)

varies by assets  
income and labour 

*** and **significance at 0.01 and 0.05 levels, respectively; heteroskedasticity robust standard errors for PSM results 
and design-based standard errors for IPWRA results are presented in parentheses; the bootstrap 95% confidence inter-
vals are in parentheses (n = 1 000); sensitivity analysis was conducted using 1.5γ = , which is considered a conservative 
assumption (γ – the odds of differential treatment assignment due to unobserved confounders); expected crop yield 
is measured at log-transformed forms; ATT – average treatment effects on the treated; IPWRA – inversed probability 
weighted regression adjustment; PSM – propensity score matching
Source: Authors' calculations

Table 4. PSM and IPWRA model estimates for Slovenia

Outcomes ATT (PSM) ATT (IPWRA) Sensitivity analysis Heterogeneity  
treatment effect (HTE)

Expected crop yield –0.162 (0.130)
(–0.383, 0.065) 

–0.030 (0.107)
(–0.242, 0.181)

no effect 
(P = 0.725) varies by assets

Crop yield variance –0.553***(0.123)
(–0.726, –0.387)

–0.393*** (0.117)
(–0.623, –0.163)

no effect 
(P = 1.000)

varies by assets  
and labour

Crop yield skewness 2.285*** (0.626)
(1.477, 3.105)

1.736** (0.629)
(0.499, 2.974)

strong effect 
(P = 0.000)

varies by assets  
and labour

*** and **significance at 0.01 and 0.05 levels, respectively; heteroskedasticity robust SEs for PSM results and design-based 
standard errors for IPWRA results are presented in parentheses; the bootstrap 95% confidence intervals are in parentheses 
(n = 1 000); sensitivity analysis was conducted using 1.5γ = , which is considered a conservative assumption ( γ  – the odds 
of differential treatment assignment due to unobserved confounders); expected crop yield is measured in log-transformed 
forms; ATT – average treatment effects on the treated; IPWRA – inversed probability weighted regression adjustment; 
PSM – propensity score matching
Source: Authors' calculations
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The negative and statistically significant ATT for 
crop yield variance for Estonia and Slovenia indi-
cates that ALOCI reduces the volatility of crop yield 
output. 

The results for both countries show that the estimat-
ed ATTs for skewness is positively and statistically sig-
nificant. Thus, ALOCI reduces downside risk. Overall, 
the findings of both PSM and IPWRA model estima-
tions (Tables 3 and 4) are like the results of Table 1, ver-
ifying that our ATT estimates are robust.

Heterogeneity treatment effect regression results 
(Supplementary Tables  S4 and  S5) show that the 
treatment effects vary based on  factors like tenure, 
labour and income (for Estonia), and assets and 
labour (for Slovenia), suggesting that targeted in-
terventions could be  more effective than uniform 
policies. This finding is supported by the  literature, 
e.g. Nilsson (2017) and Carter et al. (2019) found that 
the effect of the investment support varied with the 
size of the support relative to firm/farm income and 
had a  positive impact on  productivity. The policy-
makers can design more efficient and equitable agri-
cultural programs by focusing resources on specific 
subgroups, ultimately enhancing the overall impact 
and contributing to  sustainable development goals. 
To  mitigate agricultural yield risks in  Slovenia due 
to exceptional weather conditions such as droughts 
and floods, a  combination of  short-term and long-
term strategies and policy measures is  essential. 
Among them is water management with implemen-
tation of efficient irrigation systems and investment 
in  water reservoirs to  store excess rainfall for dry 
periods. Irrigation plays a  relatively limited but in-
creasingly important role for high-value crops such 
as vegetables, orchards, and vineyards. Many crops 
traditionally rely on  natural precipitation (Mavsar 
et  al.  2025). However, climate changing weather 
patterns, including prolonged droughts, are making 
irrigation more crucial, especially in the Pannonian 
region in north-eastern Slovenia.

It is  also important to  adjust crop rotation types 
to  climate change over the hot summer period, for 
ensuring stable yields, food security, and agricultural 
sustainability. Resilient crops can encourage the use 
of drought- and flood-resistant crop varieties tailored 
to local conditions through research and government 
supports. This can be  supported with early warning 
systems with develop and expand meteorological 
forecasting tools to provide timely alerts for extreme 
weather conditions. It  is  likely to  require up-to-date 
education and training of  farmers on  climate-smart 

agriculture and support research into precision farm-
ing and adaptive technologies.

Soil health management promoting integrated and 
sustainable farming practices with intercropping and 
crop rotation, including to mitigate the impacts of high 
temperature in  the summer period, reduced tillage, 
and organic matter enrichment to improve soil struc-
ture and water retention can improve crop yields and 
increase crop production while reducing environmen-
tal footprint (Li et al. 2021; Chai et al. 2021).

Proper fertilisation can enhance soil fertility and 
crop growth, helping plants withstand stress from 
drought, pests, and diseases. Balanced fertilisation 
(nitrogen, phosphorus, potassium) can improve 
yields. However, excessive use of  fertiliser can lead 
to soil degradation, water pollution, and reduced bio-
diversity. Precision farming and organic fertilisers can 
optimise benefits while minimising environmental 
risks (Čechura et al. 2021).

Crop protection (pesticides and fungicides) protect 
crops from pests, diseases, and weeds, reducing yield 
losses. While chemical crop protection improves re-
liability, overuse can cause pesticide resistance, harm 
pollinators, and contaminate water sources. Inte-
grated Pest Management, which combines biological 
controls with minimal chemical use, can be  a  more 
sustainable approach.

By combining these measures, Slovenia and Eston-
nia can improve efficiency in use of chemical fertilisers 
and crop protection products that can help mitigate 
crop yield risks and enhance agricultural resilience, but 
carefully managed to  ensure sustainability and envi-
ronmental protection, ensuring stable crop production 
and food security despite changing climate patterns.

CONCLUSION

This paper investigated the inspirations of  farm-
ers' decisions to  apply ALOCI on  downside risk ex-
posure using FADN farm-level data from Estonia and 
Slovenia. We used a combination of propensity score 
matching and the doubly robust inverse probability 
weighted regression models to achieve our objective.

The results indicate that assets and labour sources 
were some of the important determinants of ALOCI 
in  both countries. The results reveal that ALOCI 
increases the expected crop yield in Estonia but de-
creases that in  Slovenia. The latter result and find-
ing are surprising but might indicate less efficient use 
of  chemical agricultural inputs in  mitigating down-
side risk exposure in  crop farming. It  can be  also 

https://agricecon.agriculturejournals.cz/esm/298/2024-AGRICECON/1.pdf
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linked to changing climatic conditions with adverse 
weather conditions, particularly frequent severe 
droughts with prolonged extremely high daily tem-
peratures when efficiency in  use of  chemical inputs 
in terms of fertilisers and pesticides might be limited 
without complementary use of  irrigation to  cereals 
to fertiliser.

Whereas the results for crop yield variance and 
crop yield skewness are the same for both countries: 
ALOCI reduces the volatility of  crop yield output 
and reduces downside risk. In particular, the average 
treatment effect on the treated (ATT) estimates shows 
that ALOCI increases expected crop yield in Estonia 
by  10% and reduces expected crop yield in  Slovenia 
by  16.2%. At  the same time, the ALOCI decreases 
crop yield skewness for Estonia and Slovenia by 19% 
and 22% respectively.

The results and findings are robust to  alternative 
matching algorithms and to  bias. The results point 
to the need for policies to encourage financial invest-
ment in technology adoption reducing crop yield risk, 
crop rotation and diversification strategies to mitigate 
the climate change effects and to  adopt eco-friendly 
farming practices. Farmer organisations models sup-
ported with the most recent developments and adop-
tion of artificial intelligence, drone, sensor, and robotic 
technologies can act as  agents for more efficient and 
sustainable adoption of fertilisers and crop protection 
on crop yield downside risk.
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