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Abstract: The study aims to analyse the impact of application of chemical inputs like fertilisers or crop protection
products on farm crop yield productivity in Estonian and Slovenian agriculture. We combined the propensity score
matching (PSM) method with an inverse probability weighted regression (IPWRA) model to derive treatment effects
of the adoption of these critical inputs using Farm Accountancy Data Network data. Results exhibit consistency across
estimation techniques. Estimates of both IPWRA and PSM models showed that adoption of at least one of the chemi-
cal inputs decreases volatility of crop yield output and downside risk. The results are more robust for Estonian than for
Slovenian farms suggesting on possible impacts of other exogenous factors such as climate change on mitigating the
crop yvield downside risk.
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Unexpectedly lower crop yield outcomes or down-
side risks challenge farmers' use of external inputs that
can enhance crop productivity (Mohring et al. 2020).
Agriculture crop farm income risk is determined
by various factors particularly crop yield instabil-
ity, price volatility and cost risk (EI Benni and Finger
2014). The bibliometric analysis regarding risk in agri-
culture has revealed that literature has focused on the
impacts of climate and food security, and the insur-
ance schemes in agriculture (Novickyté 2019). Most
recently the farm sector has been affected by a chang-
ing set of risk sources including more unusual and
extremely adverse weather patterns. This induces the
need for assessments and adjustments in risk man-
agement tools.

Our focus is on crop yield downside risks, which can
be caused by various factors related to input uses, agri-
cultural natural factor endowments, climate change and
risk management in crop production and agriculture.
The conditions for crop production are negatively deter-
mined by a high level of risk in agriculture, particularly
in crop production, due to climate change and the re-
sulting extreme weather conditions. They increase the
likelihood of natural disasters, which is reflected in the
quantity and quality of crop production. The ability
of early detection and effective management of the risks
at the farm level is important for crop market trends
in monitoring and decision-making of the price risk,
production or income risk with the diversification as the
farm's risk management strategy (Jankelova et al. 2017).
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This article aims to investigate the impacts of chem-
ical input adoption on crop yield downside risk by ap-
plying propensity score matching (PSM) and inverse
probability weighted regression adjustment (IPWRA)
estimation procedures. Estonia and Slovenia are select-
ed as the case studies, both being members of the Com-
mon Agricultural Policy (CAP) of the European Union.
Both countries aim to prevent the impacts of climate
change by reducing crop yields' sensitivity to climate
change. Slovenian agriculture has suffered the greatest
damage from drought, heavy rainfall, floods, hail and
windstorms, frost, snow, glaze ice, and weather-related
diseases and pests (MAFF 2023). The natural-climatic
conditions regarding drought in Estonia as a Northern
EU country might be better than in Slovenia as the latter
is situated in the Central-Southern EU geographic area
in the mixture between Pannonian and Mediterranean
and partly Alpine climatic conditions. The cross-coun-
try comparison represents a novel contribution to mit-
igation or reduction measures addressing the crop yield
risks and adaptation of crop production to changing
conditions. Stabilisation of crop yields can be import-
ant for the stability of the income situation of farms.

The CAP considers risk management by promoting
and co-financing the implementation of climate change
adaptation and mitigation measures through the Rural
Development Programme (Ministry of Agriculture, For-
estry and Food 2024) or other programmes or projects
in the field of agriculture (European Commission 2017).
Among the main challenges is the introduction of new,
innovative approaches to maintain or increase produc-
tivity levels while also successfully adapting to climate
change and its vulnerability (Gancheva et al. 2020).

Technology adoption on reducing crop yield risk
has been investigated in agricultural economics, most
recently particularly with climate change (Santeramo
et al. 2024). The econometric modelling of frontier
production functions has been an important area of re-
search in agricultural economics (Battese 1992; Bat-
tese and Coelli 1992; Cechura et al. 2022). While there
are studies on the productivity and efficiency of crop
farms (Bltazejczyk-Majka et al. 2012; Biagini et al. 2023;
Makieta et al. 2025), to our knowledge, there have not
been any quantitative farm-level micro-econometric
studies that examined whether crop yield output has
been impacted with the adoption of agricultural tech-
nologies such as fertilisers and/or pesticides in Estonia
and Slovenia. From a policy perspective, this is crucial
since crop yield output is expected to require improve-
ment in the level of farming practices adoption in ag-
riculture. However, the literature does not provide
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straightforward answer both for risk preferences from
crop protection products use in agriculture (Bontemps
et al. 2021) and the welfare effects of crop biodiversity
(Bozzola and Smale 2020).

This paper attempts to fill this gap by assessing the ef-
fect of the adoption at least one chemical input (ALO-
CI) like crop protection products or fertilisers on crop
yield productivity using micro-level panel data ob-
tained from Farm Accountancy Data Network (FADN)
in two EU countries. Precisely, we use the PSM and the
doubly robust IPWRA models to estimate the average
treatment effects.

MATERIAL AND METHODS

Estimating the moments of the stochastic produc-
tion function

The probability distribution of the stochastic produc-
tion function is evaluated by using a moment-based
approach (Antle 1983), allowing for flexible represen-
tation of production risks, considered the following
specification for y:

Y, :f(Xi’Bi)+Mi (1)

where: Y, — eligible crop yield output; X, — a vector
of production inputs (i.e. fertilisers, crop protection
products, other intermediate consumption, labour,
capital and land); B, — a vector of parameters, u; — the
identically independently distributed error term; i = 1,
.., N — individual farms in the sample.

Econometrically, the translog production function
is specified as follows:

In(Y;)=B, + 26:[3 ln(Xm)+0.SZ6:Z6:Bnmln(Xm )n(X,,)+u(2)

n=1m=1

where: In(Y}) — the natural logarithm of the total crop
yield output for farmer j; In(X,,) — the natural logarithm
of n input for farmer i; In(X,,)In(X,,) — the interaction
between inputs # and m, the inputs include other inter-
mediate consumption, total assets, land, labour, fertilis-
ers, and crop protection.

Because some farmers in our sample did not purchase
fertilisers and crop protection products in the 2013—
2021 years, the two input variables have zero-value
observations. Since zero values are unsuitable for mod-
elling in logarithm form [Equation(2)], we follow Villa-
no et al. (2015), Zheng et al. (2021) and Ma et al. (2022)
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by replacing zero values with one to deal with zero val-
ues. Because In(1) = 0, this allows not to omit such val-
ues from the analysis. Since prices and crop yields are
key factors influencing farmers' decisions, out-of-range
values (including negative or extreme outliers) or zeros
are unsuitable for modelling (Louhichi 2018). Therefore,
in our analysis, we excluded negative crop output val-
ues as outliers. Equation (2) is estimated by an ordinary
least squares (OLS) regression model to calculate the
first three moments, i.e. expected crop yield, its variance
and skewness (Huang et al. 2015; Issahaku and Abdulai
2020). Specifically, the expected crop yield is predicted
as E (ln(Yl. )).

The second moment represents the variance of crop
yield, which is measured by the squared term of the er-
ror term, that is, E (8 ; )2. The third moment represents
the downside risk (skewness) of crop yield, which
is measured by the third power of the error term, that
is, E(s,)’ (Ma et al. 2022).

Estimation strategy

We assume that a risk-neutral and utility-maximising
crop farmer i chooses to adopt at least one from criti-
cal inputs if the utility derived from using them exceeds
that of otherwise (Olagunju et al. 2023). We can express
farmer's i adoption decision by a latent variable F, as:

LifF >0

" =0.Z +¢ with F =
F =82 +e with F {0, otherwise ®)

where: F;, — a binary variable representing adoption
status (1 = adopters, 0 = non-adopters); Z;, — a set
of farmer characteristics and farm-level factors hypoth-
esised to influence input use decisions; &; — the error
term assumed to be normally distributed; 0, — the

unknown parameters.

To estimate the impact of ALOCI on the crop yield
productivity we explored the propensity score matching
(PSM) and inverse probability weighted regression ad-
justment (IPWRA) to produce unbiased and consistent
estimates. The PSM controls for selection bias by con-
trolling for observable confounding factors. However,
an important shortcoming of the PSM method is its in-
ability to deal with biases resulting from unobservable
characteristics of sampled units. Thus, we employed IP-
WRA estimator. According to Imbens and Wooldridge
(2009), IPWRA contributes to research which isolates
the effects of exposure, as the technique adjusts both
for the predictors of intervention and for the effects
of these predictors.

Propensity score matching (PSM)

The propensity score matching method (PSM)
is a quasi-experimental technique often used in ob-
servational causal studies (Adjin et al. 2020). We es-
timate the average treatment effect on the treated
(ATT) of critical inputs used on the expected crop
yield, crop yield variance and crop yield skewness
using the PSM model (package 'Matchlt', Sekhon
2011). Following Sseguya et al. (2020), the ATT can
be defined as:

ATT =E(®,|F, =1)- E(®,|F, =1) (4)

where: E(.) — the expectation operator; @, — the outcome
of the household's crop yield that is adopted; @ - the
outcome of a household's crop yield that did not adopt.

However, ATT from PSM can still produce biased
results in the presence of misspecification in the pro-
pensity score model (Robins et al. 2007; Wooldridge,
2010; Wossen et al. 2017). A potential remedy for such
misspecification bias is to use IPWRA.

Inverse probability weighted regression (IPWRA)
model

IPWRA (using packages 'twang' and 'survey' in R)
estimator has the double-robust property that en-
sures consistent results as it allows the outcome and
the treatment model to account for misspecification.
ATT in the IPWRA model was estimated in two steps
(Imbens and Wooldridge 2009). In the first step, we es-
timated the propensity scores using multinomial logit
regression and in the second step, linear regression was
used to estimate the ATT which was computed as fol-
lows (Kazal et al. 2020):

1

ATT = Zn‘l((y1 +1,X,) = (7, +1,X,)) )

A i=1

where: v, n; — estimated inverse probability-weighted
parameters for adopters; y,, n,— estimated inverse prob-
ability-weighted parameters for non-adopters; N, — the
total number of adopters.

To evaluate how sensitive the estimated treatment
effects are to potential hidden bias, sensitivity anal-
ysis was conducted using the 'psens' function from
the 'rbounds' package in R to assess the robustness
of treatment effects to unobserved confounders. The
'‘psens' function implements the Rosenbaum bounds
approach to evaluate how sensitive the estimated
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treatment effects are to potential hidden bias. To test
for heterogeneity in treatment effects (HTE), we con-
ducted an analysis using interaction terms in our re-
gression models.

Data and descriptive statistics

Data. The analysis is based on the Estonian and
Slovenian FADN panel datasets. FADN is a database
for a stratified sample of farms across EU countries.
This paper focuses on specialist crop farms. The EU
Types of crop farms are: (15) specialist cereals, oil-
seeds and protein crops (COP); (16) specialist other
field crops; (20) specialist horticulture; (36) specialist
orchards — fruits; (38) permanent crops combined;
(60) mixed crops (European Commission 2022).

We used FADN SE variables codes: SE010 — labour
hours used on the farm, measured as total number
of hours worked; SE025 — total utilised agricultural
area (LUAA) in hectares (ha); SE030 — leased UAA
in ha; SE131 - total crop production; SE275 — total in-
termediate consumption; SE436 — total assets; SE295
— fertiliser expenditures; SE300 — crop protection
expenditures; SE410 — gross farm income. For defla-
tion of monetary data in EUR, the agricultural input
price index (IA148) and agricultural output price in-
dex (IA146) were taken from Statistics Estonia (2021)
and the Statistical Office of the Republic of Slovenia
(2021); 2015 is a base year.

The crop yield output is calculated as the ratio of to-
tal crop production over total AA (SE131/SE025,
SE131 is deflated by index IA146 output). Other in-
termediate consumption (OIC) was calculated as the
difference between total intermediate consumption
and both critical inputs: fertilisers and pesticides
(OIC = SE275 — SE295 — SE300) and deflated by in-
dex IA148 input. Total assets (TA), SE436, is deflated
by index IA148 input. Land is SE025, total L/AA in ha.
Labour is calculated as the ratio of SE010 over total
UAA: SE010/SE025. The use of fertilisers is calculated
as a ratio SE295 deflated by index (IA148 input) for fer-
tilisers over SE025 (ha). The use of pesticides is calcu-
lated as a ratio SE300 deflated by index IA148 input for
pesticides over SE025 (ha).

In the FADN database, the farm type and econom-
ic size of farm households is determined based on the
value of the standard output (SO) (Eurostat 2023).
In the empirical estimation, economic size classes (that
range from 3 to 14) are used as an indicator of farm
size. Farms with SO EUR 4 000-8 000 belong to size
class 3, and farms with SO above EUR 3 000 000 belong
to size class 14.

530

https://doi.org/10.17221/298/2024-AGRICECON

We used the age of the farm owner or farm manager
if the head of a farm or farm owner was not a manager.

Tenure is calculated as a ratio of difference between
total LJAA (SE025) and leased UAA (SE030) to total
UAA (SE025). Income per ha is calculated as a ratio
of gross farm income SE410 over SE025.

The major outcome indicator was crop yield output,
which is expressed in natural logarithm.

Descriptive statistics. Table 1 presents the vari-
ables' means and compares these for the adopters and
non-adopters. The ¢-test values indicating the mean
differences between adopters and non-adopters sug-
gest that there are — except for land tenure in both
countries and head of farm age and farm income
in Slovenia — statistically significant differences be-
tween adopters and non-adopters in crop yield out-
put and the used inputs concerning terms of observed
characteristics. These notable differences are largely
in favour of adopters' farms, which denotes that the
adoption would generate a selection bias issue in our
estimation.

RESULTS AND DISCUSSION

Following Ma et al. (2022), we utilised the likeli-
hood ratio test (LR) and Akaike Information Cri-
terion (AIC) value to identify the most appropriate
functional form. The production functions are es-
timated by the translog specification [Equation (2)]
and Cobb—Douglas specification. The results indicate
that the translog specification is preferred (Supple-
mentary Table S1).

Table 2 presents the logit regression model estimates
of Equation (3), reporting the determinants of critical
inputs used. Labour resources and assets increase the
likelihood of ALOCI for Estonian and Slovenian farm-
ers. Whereas the head of farm age decreases the likeli-
hood of ALOCI for Estonian farmers.

Following (Ma et al. 2022), we estimate the treat-
ment effects of the critical inputs using on expected
crop yield, crop yield variance and crop yield skew-
ness using the PSM and IPWRA models. Since the
PSM methods are sensitive to the exact specification
and matching method (Imbens 2004; Caliendo and
Kopeinig 2008), we use three different matching tech-
niques: nearest neighbour matching (NNM), optimal
matching (OM) and radius matching (RM) as a ro-
bustness check. Supplementary Tables S2 and S3
present the matching quality test results, confirming
the superior performance of OM for Estonia, and RM
for Slovenia.
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Table 1. The descriptive statistics of variables used: adopters vs. non-adopters and statistical ¢-test for Estonia and

Slovenia
Variables Estonia Slovenia

adopters non-adopters mean difference adopters non-adopters mean difference
Crop yield output 207.590 13.780 193.800%** 37.156 15.3197 21.840%%*
oIC 1219.800 397.450 822.350%** 230.980 69.5600 161.420***
Total assets (TA) 6 813.260 2 436.930 4.376.330*** 3157.170 1722.5300 1 434.650***
Land (UAA in ha) 324.000 109.630 214.370%** 14.390 7.2100 7.180***
Labour 0.270 0.060 0.210*** 0.190 0.1600 0.030*
Head of farm age 52.050 53.310 -1.260* 53.980 52.0700 1.910
Land tenure 0.410 0.410 0.000 0.730 0.7700 -0.040
Farm income 83.15 7.640 75.510%** 29.160 19.6500 9.500
Farm size (SO) 7.060 5.360 1.700%** 5.610 4.6300 0.980***
f:):;ielﬁftsures) 4.030 0.000 4.030% 2.120 0.0000 21217
Crop protection
products 0.760 0.000 0.760*** 2.220 0.0000 2.220%**
(expenditures)
Expected value 0.539 0.436 0.103* 0.519 0.4800 -0.039
Variance 0.313 1.075 -0.763*** -0.054 0.4660 —0.520***
Skewness -0.467 -2.716 2.249%** 5.763 3.3050 2.458***
n 2106 537 - 1324 60 -

*** and *significance at 0.01 and 0.1 levels, respectively; OIC — other immediate consumption; SO — standard output;
UAA - utilised agriculture area

Source: Authors' calculations based on FADN data

Table 2. Determinants of the use of the critical inputs: logit regression model estimates

Estonia Slovenia
Variables ; ; ; ;
coefficients marginal effects coefficients marginal effects
Head of farm age -0.001* —0.001%** 0.001 0.001
J (0.001) (0.001) (0.000) (0.000)
Income —-0.000 —0.000*** 0.000 0.000
(0.000) (0.000) (0.000) (0.000)
Assets 0.000*** 0.000*** 0.000%* 0.000**
(0.000) (0.000) (0.000) (0.000)
Labour 0.018** 0.018* 0.046 0.046
(0.008) (0.008) (0.033) (0.033)
Land tenure 0.009 0.009 -0.015 -0.015
(0.023) (0.023) (0.021) (0.021)
0.819%** 0.912%**
Constant (0.033) - (0.297) -
Number of observations 2 643 2 643 1384 1384

*** ** and *significance at 0.01, 0.05 and 0.10 levels, resectively; robust SEs are presented in parentheses.
Source: Authors' calculations
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Tables 3 and 4 present the results for the treatment
effects of ALOCI on the first three moments of crop
yield output of the PSM (second column) and the IP-
WRA estimator for Estonia and Slovenia respectively.
Our estimates show that ALOCI increases expected
crop yield in Estonia but decreases that in Slovenia.
For Estonia, sensitivity analysis indicates that the
effect on variance is robust to hidden confounders,
whereas the effect on skewness may be influenced
by unobserved factors. The impact on expected crop
yield is inconclusive, as PSM suggests no effect, while
IPWRA finds a small but significant effect. For Slo-
venia, sensitivity analysis confirms that the effect
on variance is highly robust to unobserved confound-

Table 3. PSM and IPWRA model estimates for Estonia

https://doi.org/10.17221/298/2024-AGRICECON

ers, while the effect on skewness remains strong and
reliable even in the presence of hidden bias. The insig-
nificant effect on expected yield is also robust to po-
tential confounders. The results for Slovenia suggest
that the ALOCI is not sufficient for risk efficiency.
For example, in northeast Germany risk efficien-
cy was established for the relationship of irrigation
of cereals with nitrogen fertiliser (Meyer-Aurich
et al. 2016). In addition, Santeramo et al. (2024) ar-
gue that in Southern EU geographical areas drought
risk is more frequent for spring-summer crops which
points to the need to reform policies and strategies
of crop insurance schemes to increase farms' resil-
ience to weather shocks.

Heterogeneity

Outcomes ATT (PSM) ATT (IPWRA) Sensitivity analysis treatment effect (HTE)
Expected crop vield 0.097 (0.113) 0.278** (0.128) no effect varies by labour
P Py (~0.023, 0.222) (0.026, 0.531) (P = 0.999) and tenure

~0.601*** (0.103)

Crop vyield variance (0711, —0.494)

1.868*** (0.347)

Crop yield skewness (1.526, 2.211)

~0.545*** (0.098)
(~0.740, —0.351)

1.823*** (0.302)
(1.228,2.418)

strong effect varies by income

(P =0.000) and labour
no effect varies by assets
(P = 1.000) income and labour

*** and **significance at 0.01 and 0.05 levels, respectively; heteroskedasticity robust standard errors for PSM results
and design-based standard errors for IPWRA results are presented in parentheses; the bootstrap 95% confidence inter-
vals are in parentheses (7 = 1 000); sensitivity analysis was conducted using y =1.5, which is considered a conservative
assumption (y — the odds of differential treatment assignment due to unobserved confounders); expected crop yield
is measured at log-transformed forms; ATT — average treatment effects on the treated; IPWRA - inversed probability
weighted regression adjustment; PSM — propensity score matching

Source: Authors' calculations

Table 4. PSM and IPWRA model estimates for Slovenia

o . Heterogeneity
Outcomes ATT (PSM) ATT (IPWRA) Sensitivity analysis treatment effect (HTE)
Expected crop yield —0.162 (0.130) —0.030 (0.107) no effect varies by assets
P Py (~0.383, 0.065) (~0.242, 0.181) (P = 0.725) Y
Crop vield variance —0.553%%%(0,123) -0.393*** (0.117) no effect varies by assets
Py (=0.726, —0.387) (=0.623, —0.163) (P = 1.000) and labour

2.285*** (0.626)
(1.477, 3.105)

1.736** (0.629)
(0.499, 2.974)

strong effect
(P = 0.000)

varies by assets

Crop yield skewness and labour

*** and **significance at 0.01 and 0.05 levels, respectively; heteroskedasticity robust SEs for PSM results and design-based
standard errors for IPWRA results are presented in parentheses; the bootstrap 95% confidence intervals are in parentheses
(n =1 000); sensitivity analysis was conducted using y = 1.5, which is considered a conservative assumption (y — the odds
of differential treatment assignment due to unobserved confounders); expected crop yield is measured in log-transformed
forms; ATT — average treatment effects on the treated; IPWRA - inversed probability weighted regression adjustment;
PSM - propensity score matching

Source: Authors' calculations
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The negative and statistically significant ATT for
crop yield variance for Estonia and Slovenia indi-
cates that ALOCI reduces the volatility of crop yield
output.

The results for both countries show that the estimat-
ed ATTs for skewness is positively and statistically sig-
nificant. Thus, ALOCI reduces downside risk. Overall,
the findings of both PSM and IPWRA model estima-
tions (Tables 3 and 4) are like the results of Table 1, ver-
ifying that our ATT estimates are robust.

Heterogeneity treatment effect regression results
(Supplementary Tables S4 and S5) show that the
treatment effects vary based on factors like tenure,
labour and income (for Estonia), and assets and
labour (for Slovenia), suggesting that targeted in-
terventions could be more effective than uniform
policies. This finding is supported by the literature,
e.g. Nilsson (2017) and Carter et al. (2019) found that
the effect of the investment support varied with the
size of the support relative to firm/farm income and
had a positive impact on productivity. The policy-
makers can design more efficient and equitable agri-
cultural programs by focusing resources on specific
subgroups, ultimately enhancing the overall impact
and contributing to sustainable development goals.
To mitigate agricultural yield risks in Slovenia due
to exceptional weather conditions such as droughts
and floods, a combination of short-term and long-
term strategies and policy measures is essential.
Among them is water management with implemen-
tation of efficient irrigation systems and investment
in water reservoirs to store excess rainfall for dry
periods. Irrigation plays a relatively limited but in-
creasingly important role for high-value crops such
as vegetables, orchards, and vineyards. Many crops
traditionally rely on natural precipitation (Mavsar
et al. 2025). However, climate changing weather
patterns, including prolonged droughts, are making
irrigation more crucial, especially in the Pannonian
region in north-eastern Slovenia.

It is also important to adjust crop rotation types
to climate change over the hot summer period, for
ensuring stable yields, food security, and agricultural
sustainability. Resilient crops can encourage the use
of drought- and flood-resistant crop varieties tailored
to local conditions through research and government
supports. This can be supported with early warning
systems with develop and expand meteorological
forecasting tools to provide timely alerts for extreme
weather conditions. It is likely to require up-to-date
education and training of farmers on climate-smart

agriculture and support research into precision farm-
ing and adaptive technologies.

Soil health management promoting integrated and
sustainable farming practices with intercropping and
crop rotation, including to mitigate the impacts of high
temperature in the summer period, reduced tillage,
and organic matter enrichment to improve soil struc-
ture and water retention can improve crop yields and
increase crop production while reducing environmen-
tal footprint (Li et al. 2021; Chai et al. 2021).

Proper fertilisation can enhance soil fertility and
crop growth, helping plants withstand stress from
drought, pests, and diseases. Balanced fertilisation
(nitrogen, phosphorus, potassium) can improve
yields. However, excessive use of fertiliser can lead
to soil degradation, water pollution, and reduced bio-
diversity. Precision farming and organic fertilisers can
optimise benefits while minimising environmental
risks (Cechura et al. 2021).

Crop protection (pesticides and fungicides) protect
crops from pests, diseases, and weeds, reducing yield
losses. While chemical crop protection improves re-
liability, overuse can cause pesticide resistance, harm
pollinators, and contaminate water sources. Inte-
grated Pest Management, which combines biological
controls with minimal chemical use, can be a more
sustainable approach.

By combining these measures, Slovenia and Eston-
nia can improve efficiency in use of chemical fertilisers
and crop protection products that can help mitigate
crop yield risks and enhance agricultural resilience, but
carefully managed to ensure sustainability and envi-
ronmental protection, ensuring stable crop production
and food security despite changing climate patterns.

CONCLUSION

This paper investigated the inspirations of farm-
ers' decisions to apply ALOCI on downside risk ex-
posure using FADN farm-level data from Estonia and
Slovenia. We used a combination of propensity score
matching and the doubly robust inverse probability
weighted regression models to achieve our objective.

The results indicate that assets and labour sources
were some of the important determinants of ALOCI
in both countries. The results reveal that ALOCI
increases the expected crop yield in Estonia but de-
creases that in Slovenia. The latter result and find-
ing are surprising but might indicate less efficient use
of chemical agricultural inputs in mitigating down-
side risk exposure in crop farming. It can be also
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linked to changing climatic conditions with adverse
weather conditions, particularly frequent severe
droughts with prolonged extremely high daily tem-
peratures when efficiency in use of chemical inputs
in terms of fertilisers and pesticides might be limited
without complementary use of irrigation to cereals
to fertiliser.

Whereas the results for crop yield variance and
crop yield skewness are the same for both countries:
ALOCI reduces the volatility of crop yield output
and reduces downside risk. In particular, the average
treatment effect on the treated (ATT) estimates shows
that ALOCI increases expected crop yield in Estonia
by 10% and reduces expected crop yield in Slovenia
by 16.2%. At the same time, the ALOCI decreases
crop yield skewness for Estonia and Slovenia by 19%
and 22% respectively.

The results and findings are robust to alternative
matching algorithms and to bias. The results point
to the need for policies to encourage financial invest-
ment in technology adoption reducing crop yield risk,
crop rotation and diversification strategies to mitigate
the climate change effects and to adopt eco-friendly
farming practices. Farmer organisations models sup-
ported with the most recent developments and adop-
tion of artificial intelligence, drone, sensor, and robotic
technologies can act as agents for more efficient and
sustainable adoption of fertilisers and crop protection
on crop yield downside risk.
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