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Abstract

Martelo-Vidal M.J., Vázquez M. (2014): Evaluation of ultraviolet, visible, and near infrared spectroscopy 
for the analysis of wine compounds. Czech J. Food Sci., 32: 37–47.

Spectroscopy of UV-VIS-NIR combined with chemometric analyses was used as a non-destructive technique to build 
models for the quantitative characterisation of the main compounds of wine. The work in mixtures can give insight into 
how interferences affect the performance of calibrations in wines. Ethanol, glycerol, glucose, tartaric acid, malic acid, 
lactic acid, and acetic acid were evaluated as pure compounds and in mixtures. Different pre-treatments for the spectra 
and modelling strategies such as partial least squares (PLS) regression or Principal Component Regression (PCR) were 
evaluated. All pure compounds studied showed a good relationship between spectra and concentrations. However, interfer-
ences were observed in the mixtures and only good models for ethanol, tartaric acid, and malic acid were obtained. The 
best model was obtained in the NIR region for ethanol and in the UV region for tartaric acid and malic acid. The results 
indicate that NIR spectroscopy could be used as an alternative to conventional chemical methods for ethanol determina-
tion and UV spectroscopy for the determination of tartaric acid and malic acid.
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Food production demands a high level of qual-
ity. Satisfying this demand during and after pro-
duction requires appropriate analytical tools for 
analysis. Desirable features of such tools include 
speed, ease-of-use, minimal or no sample prepara-
tion. These features are characteristic of a wide range 
of spectroscopic methods (Cozzolino et al. 2011d; 
Restaino et al. 2011). In the last years, wineries 
have invested in technology to improve the qual-
ity of wine. Fermentation monitoring is a growing 
need in the wine industry, which implies methods 
providing online information in order to assure the 
quality of the product at all stages of the process (Di 
Egidio et al. 2010).

The rapid determination of ethanol and reducing 
sugars (the sum of glucose and fructose which consti-
tutes the bulk of residual sugars), along with volatile 
acidity, would have a direct technological impact 
on the production of wines because fermentation 
in this rich medium can be particularly erratic and 

difficult. At the final quality control and regulatory 
level, it is also of interest to know the contents of 
individual sugars in the final product (Garcia-
Jares & Médina 1997). However, the methods of 
analysis are time consuming, laborious, costly, and 
inconvenient for online, rapid quality evaluation 
of wines. Therefore, it is necessary to develop a 
new and expeditious detection method for ethanol, 
sugars, and organic acids of wines (Liu et al. 2011; 
Rios-Corripio et al. 2012).

Near infrared (NIR) spectroscopy has become one of 
the most attractive and most frequently used methods 
of analysis, providing simultaneous, rapid, and non-
destructive quantification of the major components 
in many agricultural products and plant materials 
(Urtubia et al. 2004; Cozzolino et al. 2006; Nicolai 
et al. 2007; Martelo-Vidal et al. 2013).

NIR spectroscopy has been applied to a wide array 
of applications from agri-food to pharmaceutical and 
petroleum industries. Infrared spectroscopy is a use-
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ful method for the quality control and quantitative 
analysis of solid materials and liquids in chemical, 
pharmaceutical, and food industries (Kolomiets et 
al. 2010; Oliveri et al. 2011). In food-related ap-
plications, several reviews synthesised the current 
status of research. On the other hand, chemometrics 
builds a bridge between the methods and their ap-
plication in chemistry, playing a very relevant role 
in spectroscopy. The combination of vibrational 
spectroscopy and chemometrics provides calibra-
tion models for specific complex-matrix analyses 
and classification and/or discrimination tools, as 
it is also suitable to handle dimensional overload, 
collinearity, spectral interferences and spectral noise 
on vibrational spectra, thus providing good data-
acquisition and data-processing methods (Moros 
et al. 2010; Rohman et al. 2011).

Food products are mainly composed of water, car-
bohydrates, proteins, fats, and other constituents 
that are present at low concentrations, for example 
vitamins and minerals. All these compounds may 
contribute to the shape or the absorbance spectrum 
obtained in the UV/VIS and NIR region. Although 
the major compounds (water, carbohydrates, pro-
teins, fats) dominate because constituents present 
at concentrations below approximately 0.1% (w/w) 
are difficult to detect in water-rich systems (Queji 
et al. 2010; Cozzolino et al. 2011d).

The major constituent of fruits, fruit juices and 
wine is water, thus the NIR spectrum is dominated 
by the water peaks, reducing prediction accuracy 
for constituents that are present in relatively low 
concentrations, particularly if their spectra over-
lap with that of water. The second most dominant 
analyte is sugar, expressed as total reducing sugar, 
or as individual sugars such as glucose (Nicolai et 
al. 2007; Walsh & Kawano 2009). Ethanol has a 
strong NIR absorbance signal in alcoholic beverages, 
usually the second only to water, but accuracy and 
robustness of calibrations can be limited by matrix 
variations, particularly variations in sugar concentra-
tions (Cozzolino et al. 2011b). On the other hand, 
the determination of organic acids in biomaterials 
is usually performed by high-performance liquid 
chromatography (HPLC), but these methods are 
time-consuming and cost-intensive. In recent years, 
new applications involving the determination of other 
minor compounds (volatile compounds, elements 
and amino acids) in plant materials have been also 
reported (Cozzolino et al. 2011c).

Compared to traditional methods, multivariate 
data analysis combined with modern UV-VIS-NIR 

instrumental techniques (Urbano-Cuadrado et 
al. 2005; Riovanto et al. 2011) gives a new and a 
better insight into complex problems by measuring 
a great number of chemical compounds at once, thus 
enabling the fingerprinting of each sample. These 
methods are attractive due to their inherent features 
of versatility, flexibility, effectiveness, and richness 
of information (Cozzolino et al. 2011c). 

Partial least squares (PLS) regression is a method 
for constructing predictive models when the fac-
tors are numerous and highly collinear. The general 
idea of PLS is an attempt to extract as much latent 
factor variation as possible while modelling several 
responses well (Tobias 1995). In PLS regression an 
orthogonal basis of latent variables is constructed 
one by one in such a way that they are oriented along 
the directions of maximal covariance between the 
spectral matrix and the response vector (Wold et 
al. 2001). Principal component regression (PCR) is a 
widely used regression model for data having a high 
degree of covariance in the independent or predic-
tor variables, or where ill-conditioned matrices are 
present (Xiaobo et al. 2011).

PLS analysis was used as a method to extract the la-
tent variables (LV) of the original spectral data. Thus, 
LV could reduce the dimensionality and compress 
the original spectral data and explain the variance 
of the original spectral data related to the chemical 
constituents. The regression coefficients obtained 
by PLS analysis are helpful to find which variables 
were relevant and important for the prediction of 
Y-variables and to obtain the calibration models 
(Chen et al. 2006; Liu et al. 2011). 

Wine is a complex system where great interferences 
can be present. The work in mixtures can give an 
insight into how interferences affect the performance 
of calibrations. Therefore the aim of this paper was to 
assess the application of UV-VIS-NIR spectroscopy 
in the analysis of the main compounds of wine (etha-
nol, glycerol, glucose, tartaric acid, malic acid, acetic 
acid, and lactic acid). Models were obtained using 
an in-vitro approach where the spectra of aqueous 
solutions and mixtures of the cited compounds were 
obtained and evaluated. Interferences and interactions 
in the spectra of the main compounds of wine were 
determined by UV/VIS/NIR spectroscopy.

MATERIAL AND METHODS

Samples. The in-vitro solutions of pure compounds 
and mixtures of ethanol, glycerol, glucose, tartaric 
acid, malic acid, acetic acid, and lactic acid were 
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prepared and the spectra were measured. The cali-
bration was done with pure compounds. Seven in 
vitro solutions were prepared for each compound. 
The ranges of studies for pure solutions were (in 
g/l): ethanol 50–160, glycerol 0–12, glucose 0–10, 
tartaric acid 0–10, malic acid 0–5, lactic acid 0–5, 
and acetic acid 0–5. These in vitro solutions were 
prepared from standard solutions. All standard so-
lutions and samples were prepared with distilled 
water in aseptic plastic tubes using micropipettes 
and HPLC quality reagents.

Mixtures of the wine compounds were also prepared. 
The ranges of studies for mixtures are shown in Table 1. 
An experimental design with 152 samples of mixtures 
was performed following a Central Composite Design 
(CCD). CCD has good design properties, little col-
linearity, rotatable, orthogonal blocks, insensitive to 
outliers and missing data. Each factor was studied at 
five levels. The region of operability must be greater 
than the region of interest to accommodate axial runs. 
152 experiments combining the seven variables were 
performed following the design of Table 1. To validate 
the selected models, 60 new samples were measured.

Spectral measurements. Samples were scanned 
in transmittance mode in UV, VIS, and NIR regions 
(190–2500 nm) using a V-670 spectrophotometer. Spec-
tral data were collected using the Spectra ManagerTM II 
software (both Jasco Inc., Tokyo, Japan). Samples were 
scanned in a quartz cell with 1 mm path length and 
equilibrated at 33°C (Cozzolino et al. 2007) for 10 min 
before scanning. Spectral data were stored as transmit-
tance (T) at 2 nm intervals. The samples were scanned 
in duplicate to obtain a total of 304 spectra of in-vitro 
mixture samples and 14 spectra for each component 
evaluated in pure solutions. 

Spectral data pre-treatments. The spectra were 
exported from Spectra ManagerTM II software (Jasco 
Inc., Tokyo, Japan) to Unscrambler software (ver-
sion X 10.2; CAMO ASA, Oslo, Norway) for the 
chemometric analysis. Prior to the calibration, the 
spectral data were pre-processed for optimal perfor-

mance (Liu et al. 2011). The UV/VIS and NIR spectra 
were transformed using different mathematical pre-
treatments to remove and minimise the unwanted 
spectral contribution (Di Egidio et al. 2010) and to 
reduce undesirable systematic noise, such as baseline 
variation, light scattering and enhance the contribu-
tion of the chemical composition (Chen et al. 2011). 
The pre-treatments applied were: normalisation + 
smoothing; normalisation + 1st derivative; normali-
sation + 2nd derivative; normalisation + SNV; nor-
malisation + detrending; normalisation + baseline; 
normalisation + MSC; normalisation + deresolve; 
normalisation + noise; detrending; baseline; baseline + 
smoothing; baseline + 1st derivative; baseline + SNV; 
baseline + MSC; baseline + deresolve; baseline + noise; 
smoothing + SNV + detrending; normalisation + 
1st derivative + baseline; normalisation + 2nd de-
rivative + baseline; detrending + SNV + smoothing; 
smoothing + SNV + baseline; baseline + 1st deriva-
tive + normalisation; smoothing + SNV + baseline; 
baseline + SNV + smoothing; 1st derivative +  MSC + 
SNV; 2nd derivative + MSC + SNV; MSC + SNV + 
1st derivative; MSC + SNV + 2nd derivative; SNV + 
detrending + 1st derivative; SNV + detrending + 
2nd derivative; 1st derivative + detrending + SNV; 
2nd derivative + detrending + SNV.

Quantitative calibrations were developed to predict 
the studied compounds. For comparative purposes, 
two model techniques were applied: partial least-
square (PLS) and principal component regression 
(PCR) (Urbano-Cuadrado et al. 2004; González-
Caballero et al. 2010).

In development of PLS and PCR models, full cross-
validation for pure in vitro solutions and random 
cross-validation with 50 segments and 6–7 for each 
segment for mixture in-vitro solutions were per-
formed. Cross-validation was used to validate the 
quality and to prevent the overfitting of the calibra-
tion model (Ribeiro et al. 2010; Chen et al. 2011).  

The following spectral regions and groups of peaks 
were tested for calibration purposes: the whole  

Table 1. Levels of the CCD experimental design for 152 mixtures of wine compounds

Compounds Levels (g/l)
Ethanol 67.47 80 100 120 132.53
Glycerol 4.12 6 9 12 14
Glucose  0.039 1.7 4.35 7 8.66
Tartaric acid 0.01 1.2 3.1 5 6.2
Malic acid 0.03 0.5 1.25 2 2.5
Lactic acid 0.08 0.3 0.65 1 1.2
Acetic acid 0.08 0.3 0.65 1 1.2
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UV/VIS/NIR spectral range (190–2500 nm); region A 
(spectral ranges covering different regions of higher 
absorption: 2261–2257, 1879–1870, 1392–1376, 
856–850, 348–332, 237–224, and 202–190 nm); peak 
group B (spectral peaks with higher absorption): 
2257, 1870, 1390, 335, 223, and 202 nm; peak group 
with higher absorption for each compound (2257, 
1871, 1388, 856, 348, 334, 223, 209, and 202 nm for 
tartaric acid; 2293, 2257, 2240, 1892, 1874, 1743, 
1691,1416, 1391, 1373, 1144, 250, 236, and 202 for 
glucose; 2261, 1876, 1392, 332, 332, 252, 232, and 
208 nm for malic acid; 2257, 1870, 1388, 348, 334, 
236, 220, 208, and 202 nm for lactic acid; 2257, 1872, 
1687, 1390, 239, 224, 210, and 202 nm for glycerol; 
2257, 1871, 1690, 1391, 239, 224, 210, and 202 nm for 
acetic acid and 2261, 1889, 1666, 1395, 300, 228, and 
202 nm for ethanol), NIR region (780–2500 nm); VIS 
region (400–800 nm) and UV region (190–400 nm). 

Model assessment and predictive capability was 
evaluated by the following indices: determination 
coefficient (r2) (Davrieux et al. 2010; Chen et al. 
2011) and root mean square error of prediction 
(RMSEP) (Castritius et al. 2010; Liu et al. 2009). 
Generally, a good model should have high determi-
nation coefficient and low RMSEP. The r2 should be 
close to the value 1 (Chen et al. 2011). Thus, r2 values 
higher than 0.90 indicate excellent precision, values 
between 0.70 and 0.90 mean good precision and on 
the other hand, values lower than 0.70 indicate that 
the equation can be used only for screening purposes, 
which enable distinction between low, medium and 
high values for the measured parameter (Urbano-
Cuadrado et al. 2004; Novales et al. 2009).

RESULTS AND DISCUSSION

Raw UV/VIS/NIR spectra. Any water present in 
the samples dominates spectra of natural products. 
For this reason, quantitative analysis often relies on 

minor changes in spectra (García-Jares & Médina 
1997). Therefore the determination of the studied 
compounds in aqueous solutions had to be based on 
very small differences. 

Figure 1 shows the spectra of ethanol solutions. 
It was observed that the transmittance in several 
zones changes with the ethanol concentration. The 
plot shows the principal amplified regions of ethanol 
absorptions in 1600–1900 nm region related with 
O-H combinations (Xiaobo et al. 2010) and C-H 
stretch first overtones (Liu et al. 2008; Xiaobo et 
al. 2010) and 2200–2300 nm related with C-H vibra-
tions (Osborne et al. 1993; Dambergs et al. 2002; 
Cozzolino et al. 2003).

The spectra of other compounds in aqueous solu-
tions had minor variations in the transmittance. In 
the case of glucose, the principal variations were in 
the UV region and in 1200 nm and 1450 nm (NIR 
region). However, these variations were very slight. 
In the case of glycerol and organic acids, the principal 
variations were in the UV region. Water overlapped 
the absorption of the constituents of solutions and 
made the visualisation of the compound variations 
difficult.

Figure 2 shows the UV/VIS/NIR raw spectra of 
mixtures with all the main wine compounds. In 
the NIR region, the spectrum was dominated by an 
absorption band at around 1200 nm region related 
with sugars (González-Caballero et al. 2010). 
Water-related absorption bands were also found at 
around 950 nm and 1460 nm, which are related to 
the third overtone of O-H, as it is usually the case for 
fruits and vegetables and their juices, with 70–80% 
of water (Murra 1987; McGlone & Kawano 1998; 
Williams 2001). Spectral variations at 990 nm were 
produced by the O-H stretch second overtones from 
sugars and organic acids. The absorption bands at 
1450 and 1950 nm were related to the first overtone 
of the O-H stretch (Liu et al. 2008) and a combination 

Figure 1. Spectra of pure ethanol 
solutions
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of stretch and deformation combination of O-H group 
in water, glucose and ethanol (Da Costa Filho 2009; 
Ferrari et al. 2011; Liu et al. 2011). Absorptions 
were observed at 1690 nm related with either C-H3 
stretch first overtone and 1750 nm, related to C-H2, 
C-H stretch first overtones in glucose and ethanol 
(Liu et al. 2008; Ferrari et al. 2011). Absorption at 
2260 nm was likely related with C-H combinations 
and O-H stretch overtones, the latter for glucose. 
Absorption at 2302 nm was mainly related with C-H 
combination vibrations (CH3 and CH2) of ethanol, 
carbohydrates and organic acids. In the UV region, 
202 and 230 nm were the peaks with the highest 
responses. These are relative to carboxyl groups of 
organic acids (Shen et al. 2010; Cozzolino et al. 
2011a; Ferrari et al. 2011).

Development of multivariate calibration mod-
els for pure wine compounds. UV-VIS and NIR 
spectral data were correlated with glucose, glycerol, 
ethanol or organic acid (tartaric, malic, lactic, and 
acetic acids) concentrations in pure solutions us-
ing PLS regression and PCR. The calibrations and 
cross-validation statistics for pure compounds of 
wine are shown in Table 2. The calibrations were 
performed for raw and several pre-treated data 
(smoothing; smoothing and 2nd derivative; smooth-
ing, 2nd derivative and SNV) and models evaluated 
by the values of r2 and RMSEP. 

The PLS model for predicting glucose showed the 
best results. The pre-treatment used in this case was 
smoothing and 2nd derivative. The results obtained 
showed the value of r2 0.999 and RMSEP 0.125 g/l. 
The model used two principal components (2 PC) 
that explain 100% of the variation of samples. 

For glycerol concentration, the best model was 
PLS, showing the values for r2 0.999 and for RMSEP 
0.112 g/l. The model with 2 PC explains 100% of the 

variation of samples. Ethanol model was PLS with 
pre-treatment of smoothing and 2nd derivative. The 
model used 2 PC and explains 100% of the variation 
of data. The value of r2 was 0.999 and that of RMSEP 
1.719 g/l. 

For tartaric acid, the best model was PLS with 
pre-treatment of smoothing, 2nd derivative and SNV. 
The results showed a high level of precision with 
r2 of 0.999 and RMSEP of 0.066 g/l. The model used 
3 PC that explain 100% of the variation. For acetic 
acid concentration, the PLS model used 2 PC with-
out pre-treatment. The value of r2 was 0.999 and 
RMSEP was 0.059 g/l. This model explains 100% 
of the variation of samples. For malic acid, the best 
model used 2 PC that explain 100% of the variation 
and raw data. The best model was obtained by PLS. 
The value of r2 was 0.998 and RMSEP 0.0916 g/l. 
Finally, the best model for lactic acid was PLS with 
r2 of 0.998 and RMSEP of 0.093 g/l. 

New samples were measured to validate the mod-
els confirming the good fitting. The results showed 
that each component of the wine could be modelled 
using the UV-VIS-NIR spectra and the models can 
be used for prediction. However, the mixtures of 
these compounds, like in the wine, can imply in-
terferences in the spectra and the models could not 
be adequate. Therefore, the mixtures of the wine 
compounds  were studied and the results are shown 
in the following section.

Development of multivariate calibration models 
for mixtures of wine compounds. The models devel-
oped with all compounds in the whole UV/VIS/NIR 
region correlated well with the spectra of tartaric 
acid, malic acid, and ethanol in PLS regression mod-
els and PCR models. The better prediction results 
for calibration sets generated by the best models 
are shown in Table 3. The predictive models for the 
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Table 2. Calibration and cross-validation statistics for de-
termination of pure compounds of wine by UV-VIS-NIR 
transmittance (whole spectra) performed on solutions 
containing only one compound each

Pre-treatments Model r2 RMSE 
(g/l)

Ta
rt

ar
ic

 a
ci

d 

raw PLS 0.997 0.198
PCR 0.997 0.207

smoothing PLS 0.997 0.201
PCR 0.996 0.210

smoothing + 2nd derivative PLS 0.995 0.250
PCR 0.995 0.253

smoothing + 2nd derivative + SNV PLS 0.999 0.066
PCR 0.999 0.104

G
lu

co
se

raw PLS 0.987 0.542
PCR 0.987 0.546

smoothing PLS 0.987 0.540
PCR 0.987 0.543

smoothing + 2nd derivative PLS 0.999 0.125
PCR 0.986 0.560

smoothing + 2nd derivative + SNV PLS 0.997 0.231
PCR 0.996 0.298

M
al

ic
 a

ci
d

raw PLS 0.998 0.092
PCR 0.998 0.098

smoothing PLS 0.998 0.092
PCR 0.998 0.098

smoothing + 2nd derivative PLS 0.997 0.105
PCR 0.997 0.098

smoothing + 2nd derivative + SNV PLS 0.994 0.151
PCR 0.994 0.153

La
ct

ic
 a

ci
d

raw PLS 0.998 0.093
PCR 0.996 0.125

smoothing PLS 0.998 0.094
PCR 0.996 0.125

smoothing + 2nd derivative PLS 0.997 0.103
PCR 0.997 0.104

smoothing + 2nd derivative + SNV PLS 0.996 0.126
PCR 0.995 0.135

G
ly

ce
ro

l

raw PLS 0.989 0.427
PCR 0.989 0.428

smoothing PLS 0.989 0.425
PCR 0.989 0.425

smoothing + 2nd derivative PLS 0.999 0.112
PCR 0.996 0.226

smoothing + 2nd derivative + SNV PLS 0.999 0.136
PCR 0.998 0.166

A
ce

tic
 a

ci
d

raw PLS 0.999 0.059
PCR 0.998 0.079

smoothing PLS 0.999 0.060
PCR 0.998 0.079

smoothing + 2nd derivative PLS 0.992 0.182
PCR 0.992 0.184

smoothing + 2nd derivative + SNV PLS 0.998 0.088
PCR 0.998 0.097

Et
ha

no
l

raw PLS 0.994 4.265
PCR 0.994 4.314

smoothing PLS 0.994 4.263
PCR 0.993 4.312

smoothing + 2nd derivative PLS 0.999 1.719
PCR 0.999 1.973

smoothing + 2nd derivative + SNV PLS 0.998 2.586
PCR 0.997 2.911

Figure 3. Regression coefficients for ethanol, glycerol, 
and glucose

other compounds (glucose, glycerol, acetic acid, and 
lactic acid) showed lower r2 and RMSEP. Therefore, 
these results show that there are important interac-
tions and similar responses in the spectra of these 
compounds that did not allow a good identification 
of the spectral response due to each compound.

New models were developed with different regions 
of spectra. In order to find the different regions, 
calibration solutions in whole spectra were used for 
determining the regression coefficients. The regres-
sion coefficients of PLS model in whole spectra and 
pre-treatments of normalization, 2nd derivative and 
baseline correction were evaluated (Figures 3 and 4). 
Ranges with high absolute regression coefficient 
values and also the peaks of maximum wavelengths 
were selected. The main criteria for selection were that 
the wavelength should have a high absolute regression 
coefficient value and should be at specific peaks and 
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valleys or the regression coefficient curve (Liu et al. 
2011). It was assumed that the wavelength with a high 
absolute regression coefficient value could represent 
useful information on wavelength bands at the peaks 
and valleys. Therefore, ranges of wavelengths were 
selected as region A and group of peaks called B. 
These were selected by comparison of regression 
coefficients of each solution compounds (ethanol, 
glycerol, glucose, tartaric, malic, acetic, and lac-

tic acid concentration). The common regions were 
selected, firstly by zones (region A), secondly by 
concrete wavelengths (group of peaks B). Concrete 
wavelengths for each compound were also studied. 
Table 3 shows the values of r2 and RMSEP obtained 
for all models. 

Models for the complete UV-VIS-NIR range were 
well correlated with ethanol and tartaric acid. The 
same was obtained for models of region A and group 
of peaks B. Like in the previous models, the models 
for the other organic acids, glucose, and glycerol had 
very low r2 values. It can be concluded that these 
models were not good predictors of wine compounds.

Models were also obtained for concrete wavelengths 
for each compound. The values of r2 and RMSE ob-
tained were well correlated with ethanol, tartaric 
acid, and malic acid. For the other compounds the 
predictive models were badly fitted. 

Models were also evaluated for the classical dis-
tribution of spectral regions in UV, VIS, and NIR 
regions. The results in VIS failed to provide good 
results to predict the wine compounds. In the UV 
region, the models PLS and PCR gave good correla-
tions for tartaric acid and malic acid (Table 3). PLS 
regression and PCR models for the other compounds 
were badly fitted. The PLS regression and PCR mod-
els obtained in the NIR region were well fitted for 
ethanol and tartaric acid.

Sixty new unknown samples were measured with 
better models for ethanol, tartaric acid and malic 
acid. The results of prediction for tartaric acid, malic 
acid, and ethanol indicated that these models can 
be used to predict the concentration of these three 
wine compounds. However, the good quantitative 
prediction in model solutions does not imply neces-
sarily good results in real wines.

The results showed that PLS and PCR models 
provided good results to predict the concentrations 
of each main wine compound in individual solutions 
using the UV/VIS/NIR spectra. The models of cali-
bration can be used for quantitative determination 
of these compounds. However, in mixtures like wine, 
these compounds show interferences that do not 
allow good fits for many of them.

In mixtures, the UV/VIS/NIR models provided 
good predictions for ethanol, tartaric acid, and malic 
acid concentrations although the models were better 
in different regions. The optimal pre-treatments in 
whole spectra were normalisation + 2nd derivative + 
baseline to PLS model of tartaric acid, 2nd derivative + 
MSC + SNV to PLS model of malic acid, smooth-
ing + SNV + detrending to PLS model of ethanol 

Figure 4. Regression coefficients for lactic, acetic, tartaric, 
and malic acid
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and 1st derivative + MSC + SNV to PCR model of 
ethanol, tartaric, and malic acids. 

Ethanol was better determined in the NIR region 
and tartaric and malic acids were better determined 
in the UV region. In the NIR region, tartaric acid 
gives also good results, using both region A and 
group of peaks B. The ethanol model obtained also 
good results in region A and group of peaks B, but it 
was better predicted using the complete NIR region. 
In the UV region, the results for ethanol were lower 
than when other spectral regions were used. 

The model for malic acid obtained good results in 
the NIR region but it was better in the UV region. 
The best pre-treatment for malic acid models was 
normalisation + 2nd derivative + baseline in region A 
and group peaks B. For PLS and PCR models of tar-
taric acid in the NIR region the best pre-treatment 
was smoothing + SNV + detrending. 

For PLS model of ethanol in the NIR region was 
normalisation + 1st derivative + baseline and for PCR 
model was smoothing + SNV + detrending. In the 
UV region, for the PLS models the pre-treatments 

Table 3. Calibration and cross-validation statistics for determination of tartaric acid, malic acid and ethanol in mix- 
tures by UV-VIS-NIR transmittance. Calibrations were performed on the 152 mixtures studied and predictions on 
additional new 60 mixtures

Compounds Spectral range Pre-treatments Model r2 RMSEP (g/l)

Tartaric  
acid

UV/VIS/NIR 
normalisation + 2nd derivative + baseline PLS 0.969 0.314
1st derivative + MSC + SNV PCR 0.969 0.313

region A
normalisation + 2nd derivative + baseline

PLS 0.885 0.603
region B PCR 0.878 0.622
concrete wavelength PLS 0.957 0.362

NIR smoothing + SNV + detrending PLS 0.740 0.906
PCR 0.743 0.902

UV 
normalisation + 1st derivative + baseline PLS 0.985 0.221
SNV + detrending + 2nd derivative PCR 0.982 0.239

VIS
detrending + SNV + smoothing PLS 0.034 1.748
baseline + SNV + smoothing PCR 0.005 1.775

Malic  
acid

UV/VIS/NIR 
2nd derivative + MSC+ SNV PLS 0.845 0.277
1st derivative + MSC + SNV PCR 0.849 0.273

region A
normalisation + 2nd derivative + baseline

PLS 0.207 0.625
region B PLS 0.249 0.608
concrete wavelength PLS 0.743 0.356

NIR smoothing + SNV + detrending PLS 0.101 0.666
PCR 0.107 0.666

UV 
2nd derivative + MSC + SNV PLS 0.926 0.191
SNV + detrending + 2nd derivative PCR 0.900 0.222

VIS
normalisation + 1st derivative + baseline PLS 0.033 0.691
baseline + 2nd derivative + normalisation PCR 0.007 0.61

Ethanol

UV/VIS/NIR 
smoothing + SNV + detrending PLS 0.983 2.453
1st derivative + MSC + SNV PCR 0.977 2.853

region A
normalisation + 2nd derivative + baseline

PLS 0.824 7.849
region B PLS 0.776 8.865
concrete wavelength PLS 0.950 4.197

NIR
normalisation + 1st derivative + baseline PLS 0.989 1.949
smoothing + SNV + detrending PCR 0.991 1.782

UV baseline + 2nd derivative + normalisation PLS 0.185 16.910
PCR 0.145 17.320

VIS
normalisation + 1st derivative + baseline PLS 0.289 15.790
1st derivative + detrending + SNV PCR 0.008 18.650
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were normalisation + 1st derivative + baseline for 
tartaric acid and 1st derivative + MSC + SNV for 
malic acid. For PCR models in the UV region it was 
SNV + detrending + 2nd derivative.

The prediction accuracy was close to similar studies 
in wine, beer and spirit drinks. Urtubia et al. (2004) 
applied NIR to predict malic acid (0.985 for r2 and RMSE 
0.56 g/l), ethanol (r2 0.99 and RMSE 1.04 g/l), acetic 
acid (r2 0.988 and RMSE 0.42 g/l), glycerol (r2 0.988 
and RMSE 0.81 g/l), and glucose (r2 0.994 and RMSE 
1.84 g/l) in wines. Liu et al. (2011) used NIR to de-
termine acetic acid (r2 0.999 and RMSE 0.603 g/l) and 
tartaric acid (r2 0.995 and RMSE 0.246 g/l) in fruit 
vinegars. Di Egidio et al. (2010) used NIR in must 
during fermentations to predict glucose (r2 0.990 and 
RMSE 1.32 g/l), glycerol (r2 0.990 and RMSE 0.49 g/l) 
and ethanol (r2 0.990 and RMSE 2.04 g/l). Castritius 
et al. (2010) used NIR in beers to determine ethanol 
(r2 0.997 and RMSE 3.19 g/l). Kolomiets et al. (2010) 
also used NIR in alcoholic beverages to determine etha-
nol (r2 0.984 and RMSE 0.22 g/l). Urbano-Cuadrado 
et al. (2004, 2005) used NIR in wine fermentations to 
determine ethanol (r2 0.986 and RMSE 0.436 g/l), glyc-
erol (r2 0.936 and RMSE 0.77 g/l), lactic acid (r2 0.860 
and RMSE 0.59 g/l), malic acid (r2 0.452 and RMSE 
0.38 g/l) and tartaric acid (r2 0.541 and 0.47 g/l).

CONCLUSION

All pure compounds studied showed a good relation-
ship between spectra and concentrations, giving good 
models for prediction. The results show that the use of 
PLS and PCR models to quantify in vitro solutions of 
each wine compound separately is feasible. However, 
in mixtures, interferences were revealed that allowed 
to obtain good models only for ethanol, tartaric and 
malic acid concentrations. Therefore, ethanol can be 
determined with PLS model and normalisation + 1st de-
rivative + baseline pre-treatment in the NIR region. 
Tartaric acid can be determined with PLS model and 
normalisation + 1st derivative + baseline correction 
pre-treatment in the UV region. Malic acid can be 
determined with PCR model and SNV + detrending 
+ 2nd derivative pre-treatment in the UV region. The 
results give insight into how the interferences can affect 
the performance of calibrations in real wines. Further 
studies are needed to validate the models in real wines.
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