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Basic tools for mathematical modelling of the sig-
moid growth of tree characteristics are relatively 
simple non-linear equations, generally referred 
to as growth functions (Van Laar, Akça 2007; 
Pretzsch 2009). The growth functions imitate the 
real growth of trees and forest stands, smooth cyclic 
fluctuations and filter random noise accompanying 
empirical growth measurements (Zeide 1993). In 
this way, they provide better knowledge of causes 
and mechanisms of growth and allow predicting the 
values and increments of modelled variables. They 
also facilitate the quantification of assumed growth 
responses or estimation of the maturity degree of an 
organism (Fitzburgh 1976; Vanclay 1994). 

An excellent overview of growth functions, their 
historical background, assumptions and the way of 
their derivation and mathematical-statistical prop-
erties can be found in the papers of Tsoularis 
and Wallace (2002); Seber and Wild (2003) or 
Karkach (2006). 

One of the principal problems of most of the clas-
sical growth functions is their asymptotic behav-
iour, at which the final value of ymax will be reached 
only if t → ∞. Thus, a biologically unrealistic as-
sumption that the growth of each living organism 
runs for an infinitely long period is a priori incor-
porated in the mathematical construction of clas-
sical growth functions. However, the growth of a 
living organism is always determinate – in the pe-
riod of physiological death, the increment of any 
dimensional variable always equals zero (Xiao 
2005). Mathematical solution of the above problem 
was described by Yin et al. (2003), who proposed 
a growth function using the frequency function of 
Beta distribution. 

Growth functions are used as semi-empirical 
growth models. Estimations of their parameters are 
carried out by means of different methods theoreti-
cally elaborated mainly for non-linear regressions. 
Currently, there is a wide range of methods of clas-
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sical frequentist statistics or of alternative Bayes-
ian statistics (Seber, Wild 2003; Carlin, Louis 
2000). Main methods of the parameter estimation 
of regression models of the frequentist school are 
the maximum likelihood estimation method (MLE) 
and the method of ordinary least squares (OLS). 
The OLS method is derived from the MLE on the 
basis of introducing the simplified assumptions 
of normality, variance homogeneity and  uncorre-
latedness of residual deviations of the regression 
model. When using the OLS method, parameter 
estimations of non-linear models are almost ex-
clusively connected to numerical techniques of the 
solution of a set of non-linear equations. In these 
cases, the OLS method is named as the nonlinear 
least squares (NLS) estimation. Another alterna-
tive method for estimation of the growth function 
parameters is the application of Bayesian statis-
tics school methods. Basic difference between the 
Fisherian and the Bayesian statistics school is a 
different understanding of the probability concept 
(D’Agostini 2003). In Bayesian estimation, the a 
priori distribution of probabilities of possible pa-
rameter values of the model with the a priori de-
fined hyperparameters is combined with new ob-
jective information included in the measured data 
of a particular experiment represented by a likeli-
hood function.

The first aim of the present paper is to propose 
a new growth and yield function of determinate 
growth and to describe its key theoretical prop-
erties. The incorporation of a special parameter 
into the functional form of the new function al-
lows assuming more realistic growth projections 
for the future. But the function can be used also 
for a retrospective estimation (reconstruction) of 
the past growth, usually in the initial life stages of a 
living organism. Therefore, the extrapolation abil-
ity of the new function for a reconstruction of the 
past growth is empirically validated. Because any 
simple growth and yield model is the inherently 
imperfect representation of complex growth pro-
cesses, relative usefulness of the new function for 
a retrospective estimation of the past growth was 
evaluated by a comparison of the accuracy of five-
year projections of real tree diameters using a new 
growth function with the accuracy of some classi-
cal growth functions. Inductive evaluation of the 
diameter estimation accuracy was done on the ba-
sis of the diameter growth empirical data obtained 
from stem analyses of beech trees. The second aim 
of the present paper is a general comparison of the 
function accuracy according to different methods 
of their parameterisation. The analysed growth 

functions were parameterised by means of the NLS 
method and the Bayesian theorem using a normal 
likelihood function. Therefore, the present paper 
also provides new information about the suitabil-
ity of different parameterisation methods of two 
contemporary statistics schools when applied for 
5-year reconstructions of the tree diameter growth. 

Material and Methods

Growth functions

A new growth function was derived empirically 
from the distribution function of Kumaraswamy 
distribution (Kumaraswamy 1980). The Kuma-
raswamy distribution (KM-distribution) represents 
a unimodal distribution of probability values of the 
random variable X within the domain 0 ≤ X ≤ 1. In 
general, the KM-distribution function fits for the 
description of the relation of two variables with 
standardized domains of the values [0,1] and is able 
to describe the S-shaped curve. Derivation of the 
new growth function was based on substitution of 
the standardized variable X with the linear trans-
formation of age t/tmax and the dependent variable 
p(X) with the linear transformation of the size of an 
organism y/ymax:

y/ymax = 1 – [1 – (t/tmax)
b]c 	  (1)

The variables tmax and ymax can be interpreted as 
the maximum age and size of an organism reached 
at the end of growth period, usually at the begin-
ning of the reproduction phase or at the time of 
physiological death. The proportion of the final 
(mature) size t y/ymax  attained at age is the degree 
of the physiological maturity for y and is presum-
ably correlated with other statistical or physiologi-
cal measures of maturity (Fitzburgh 1976); the 
ratio t/tmax can be termed in accordance with Xiao 
(2005) as the physiological age. By modification 
of equation (1), a four-parameter form of the new 
growth function, further described as KM-func-
tion, can be obtained: 

y = ymax[1 – (1 – (t/tmax)
b)c] 	  (2)

where: 
0 ≤ t ≤ tmax, tmax > 0, ymax > 0, b > 0, c > 0.

The variables tmax and ymax appear in the equa-
tion as unknown parameters. The parameter ymax 
can be interpreted as the final size of an organism 
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at growth termination at the final age tmax. The dif-
ferential form of the new growth function, known 
also as the growth rate equation, is obtained by the 
derivation of equation (2):

dy/dt = ymaxbct–
m  

1
a  x  (t/tmax)

b–1[1 – (t/tmax)
b]c–1	 (3)

From equation (2) and (3) it can be shown that 
KM-function has the following key properties: 
(i) 	 the integral form (2) allows the start of the 

growth period at the age t(0) = 0 and at the 
same time it allows y(0) = 0, the differential 
form (3) at the age t(0) = 0 predicts dy/dt = 
0, while the relative growth rate (RGR) (dy/dt)
(1/y) at the same age is not defined,

(ii) 	 the inflexion of the growth curve can occur at 
any age t and value y, the position of inflexion 
point is not constructionally prescribed, 

(iii) 	in the period of growth cessation at the time 
t = tmax, the integral form (3) predicts y = ymax 
and simultaneously according to (3) at the age 
t = tmax, it holds true that dy/dt = 0 and conse-
quently, RGR = 0.

The new growth function was compared with 
a number of classical growth functions listed in 
Table  1. The Richards function (Richards 1959) 
is probably the most relevant example of growth 
functions of the exponential decline type accord-
ing to the Zeide (1993) classification. This function 
represents one of the most frequently used growth 
models worldwide. One of its most important ap-
plications can be found e.g. in the well-known Eu-
ropean growth simulator SILVA 2.2 (Pretzsch et 
al. 2002). The Korf growth function (Korf 1939) 
belongs to the power decline type in terms of 
Zeide (1993) and is considered as the most impor-
tant growth function in Slovakia. It was used for 
the construction of domestic yield tables (Halaj et 
al. 1987; Halaj, Petráš 1998) by means of which 
about 95% of the forest stand volume in Slovakia 
is estimated. It was also used in the new Slovak 

growth simulator SIBYLA (Fabrika 2005). The 
Weibull growth function (Weibull 1951) was in-
cluded in the list because according to the Zeide 
(1993) classification, it belongs neither to exponen-
tial decline nor to power decline type, thus repre-
senting an independent construction category of 
growth functions. Similarly like the new KM-func-
tion, this function was derived exclusively empiri-
cally. The new KM-function and the Richards func-
tion were used in two different parameter forms 
with a different number of parameters. The three-
parameter form of the KM-function was derived by 
fixing the parameter tmax to the value of 500 years 
on the basis of estimation of the maximum physi-
cal age of beech trees in the territory of Slovakia 
(Pagan 1992). A common feature of all classical 
growth functions included in the selection is that 
these are all mathematical models of non-determi-
nate growth with an asymptotic character. 

Dataset

The empirical material used in this research con-
sisted of stem analyses of 35 beech trees cut down 
in a mature beech stand growing on a good site class. 
The tree age ranged from 80 to 160 years. The dia-
meter d1.3 growth series measured at breast height 
to the nearest 1 mm in a time interval of five years 
were used for the analysis. Numerical description 
of the individual growth series obtained by the ex-
ploratory graphical analysis of yield and increment 
curves is given in Table 2. Tree growth series were 
divided into two parts: parameterisation and valida-
tion. The parameterisation measurement sequences 
were created by 18 measurements at the age ranging 
from 25 to 110 years covering all the development 
tree stages. The truncation of the total growth series 
length at the age of 110 years was set in connection 
with the start of the stand shelterwood regenera-
tion, which reversed downward the tree increment 
trend characteristic of a given stand development 

Table 1. Growth function models used in this study

Model (abbreviation) Integral form Source

KM-function (KM3) y = ymax[1 – (1 – (t/tmax)
b)c] Kumaraswamy (1980)

KM-function (KM4) y = ymax[1 – (1 – (t/d)b)c] Kumaraswamy (1980)

Richards function (R3) y = ymax(1 –e–bt)c Richards (1959), Zeide (1993)

Richards function (R4) y = ymax(1 – de–bt)c Richards (1959) 

Korf function (KF3) y = ymaxe
–btc Korf (1939)

Weibull function (W4) y = a – de–btc Weibull (1951)
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phase, and which the integral forms of growth func-
tions are not able to capture. The validation part was 
created only by one measurement from the juvenile 
period at the age of 20 years. This measurement was 
omitted from the existing growth series and was left 
for a comparison of real diameter at this age with 
estimated diameter derived by backward extrapo-
lation of the parameterisation sequences covering 
ages from 25 to 110 years. Benchmarking analyses 
of real and predicted values of variables represent a 
simple and frequently used way of the growth mod-
el evaluation (Vanclay 1994; Pretzsch 2009). The 
analysis of deviations of real and projected diameter 
values in the validation part of empirical material 
enables to objectively estimate the ability of growth 
functions to extrapolate the course of the existing 
measurements in time. At growth model evaluation, 
it is probably the only possibility how to objectively 
find out whether the respective model is practical-
ly applicable for a given purpose (Ek, Monserud 
1979; Zhang 1997). 

Parameterisation

Within the classical frequentist school, param-
eterisation of each growth function for every single 
tree was done using the NLS method and the Sta-
tistica 7.1 software package (StatSoft Inc. 2005). 
The quality of fitting the measured data of single 
trees was checked by graphical illustration of the 
course of fitted growth trajectories. In total, 210 
parameterisations and backward predictions (re-
constructions) for 6 selected growth functions for 
each of the 35 trees were performed. Subsequently, 
the sample of 35 relative errors of the diameter re-
constructions at the age of 20 years was obtained 
for each selected function separately.    

Bayesian parameterisation starts by the formu-
lation of a priori probability distributions of pa-
rameters of individual growth functions. The mar-

ginal a priori parameter distributions of growth 
functions express the assumed occurrence prob-
ability of the values of all parameters for six se-
lected growth functions when applied for diam-
eter growth modelling of beech trees growing at 
different social positions and varying site quality 
under natural conditions of Slovakia. The distri-
butions were mathematically formalized (elicited) 
by a special mathematical-statistical procedure, 
whose detailed description exceeds the scope of 
this paper and which can be found in Sedmák 
(2009). In general, the elicitation uses a great deal 
of knowledge  of beech stand growth in Slovakia 
contained in the 3rd edition of yield tables (Halaj, 
Petráš 1998) and in a detailed survey of the di-
ameter structure of Slovak forest stands (Halaj 
1957). In addition, all the knowledge of site quality 
and stand structure given in the study of Šmelko 
(1982) was considered. The elicited marginal a 
priori distributions of individual parameters had a 
form of either lognormal or Gamma distribution. 
Joint a priori distributions of multiple parameters 
were created as a simple product of marginal dis-
tributions of individual parameters. 

Bayes’ theorem was applied as a combination of 
the normal likelihood function with the a priori pa-
rameter distributions estimated by elicitation. The 
growth function parameters were estimated using 
the Gibbs sampling method belonging to a group 
of numerical methods of integration of the multiple 
integrals designated as Markov Chain Monte Carlo 
(MCMC) methods in WinBugs 1.4 software pack-
age (Lunn et al. 2000). Similarly to the NLS method, 
the total number of parameterisations, backward 
reconstructions and diameter reconstruction er-
rors at the age of 20 years by means of the Bayesian  
method was 210 (6 functions × 35 trees).  

Error analysis 

Evaluation of the growth function efficiency is 
based on the calculation of 35 relative errors at the 
age of 20 years for each used growth function in the 
validation sample

ei (%) = (yp – yR/yR) × 100

where:
yP – predicted value,
yR – real value of the projected variable y.

From the relative errors were calculated the 
arithmetic mean of individual errors e% as a mea-

Table 2. Statistics of individual tree growth series
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sure of bias and biological realism of the function 
and  root mean square error (RMSE), which is a 
measure of the total error and practical applicabil-
ity of the function for a  backward estimation of 
tree characteristics.  

Results

Relative errors of 5-year reconstructions of tree 
diameter growth are presented in Tables 3 and 4. 
Table 3 shows the basic overview of biases and 
RMSE reconstructions according to the selected 
growth functions, their categories and parame-
terisation methods. Table 4 documents the ratios 
of RMSE and biases of a particular combination 
of growth function and parameterisation method 
with respect to a minimum RMSE or bias of twelve 
possible combinations (six growth functions × two 

parameterisation methods). Such relativisation fa-
cilitates a mutual comparison of growth functions 
and parameterisation methods separately accord-
ing to the aim of modelling. In forestry and ecol-
ogy, the standard aim of modelling is either mini-
mization of bias assuring the biological realism of 
projections (Bias columns) or minimization of the 
total error magnitude guaranteeing the practical 
applicability of the model (RMSE columns). There 
can also be an integrated aim of modelling, when 
simultaneous minimization of the bias and the to-
tal error magnitude is expected (Average columns). 

In general, the values of the relative RMSE re-
constructions are high and they vary from 44 to 
188% (Table 3). The magnitude of the RMSE does 
not even decrease along with the bias decrease (e.g. 
combination of KM4/NLS). The proportions of 
biases in RMSE are also considerable, i.e. in nine 
cases of the twelve investigated combinations of 

Table 3. Relative error statistics of the diameter growth reconstruction 

Growth function

Parameterisation method

NLS Bayesian Bayesian/NLS

RMSE  
(%)

Bias  
(%) Bias/RMSE RMSE  

(%)
Bias  
(%) Bias/RMSE RMSE Bias

Korf (KF3) 66.2 –59.6 0.81 59.2 –49.2 0.69 0.90 0.83

Richards (R3) 56.5 –27.6 0.24 48.8 –38.9 0.64 0.86 1.41

KM-function (KM3) 46.9 –34.4 0.54 43.0 –28.0 0.42 0.92 0.81

Three-parameter functions 56.5 –40.5 0.53 50.3 –38.7 0.58 0.89 1.02

Weibull (W4) 118.3 96.6 0.67 72.7 –62.9 0.75 0.61 0.65

Richards (R4) 66.0 –55.7 0.71 62.9 22.8 0.13 0.95 0.41

KM-function (KM4) 73.5 11.1 0.02 188.1 115.8 0.38 2.56 10.44

Four-parameter functions 85.9 17.3 0.47 107.9 25.2 0.42 1.38 3.83

Table 4. The ratios of the reconstruction error statistics – combination of the growth function/parameterisation 
method vs. combination with minimal statistics

Growth function

Parameterisation method

NLS Bayesian all 

RMSE Bias average RMSE Bias average RMSE Bias average

Korf  (KF3) 1.54 5.37 3.46 1.38 4.44 2.91 1.46 4.91 3.18

Richards (R3) 1.31 2.49 1.90 1.13 3.51 2.32 1.22 3.00 2.11

K-function (KM3) 1.09 3.10 2.09 1.00 2.52 1.76 1.05 2.81 1.93

Three-parameter functions 1.31 3.65 2.48 1.17 3.49 2.33 1.24 3.57 2.41

Weibull (W4) 2.75 8.71 5.73 1.69 5.67 3.68 2.22 7.19 4.71

Richards (R4) 1.53 5.02 3.28 1.46 2.06 1.76 1.50 3.54 2.52

K-function (KM4) 1.71 1.00 1.35 4.37 10.44 7.40 3.04 5.72 4.38

Four-parameter functions 2.00 4.91 3.45 2.51 6.05 4.28 2.25 5.48 3.87
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growth function/parameterisation method, they 
varied from 42 to 95%, and only in three cases, they 
were lower than 25%. The biases are underestimat-
ed in 2/3 of cases. This is obvious from the category 
of three-parameter functions, where all the func-
tions show underestimation.

Regardless of the parameterisation method used, 
the category of three-parameter growth functions 
compared to four-parameter alternatives reaches 
better results from the viewpoint of all the mod-
elling aims (Table 3). The three-parameter growth 
functions are characterized by lower RMSE be-
ing simultaneously accompanied by smaller biases 
when using both parameterisation methods. On 
the other hand, the proportion of biases in RMSE in 
the category of three-parameter growth functions 
is higher than 50% compared to the category of 
four-parameter growth functions. Simultaneously, 
in the category of four-parameter growth functions 
the tendency to underestimation disappears. 

A more detailed comparison of the efficiency of 
three-parameter growth functions according to 
particular parameterisation methods has shown 
that the Bayesian parameterisation is characterized 
on average by a 10% lower RMSE, or approximately 
5% smaller biases, thus surpassing the NLS method 
even from the integrated point of view (Table  4). 
Giving priority to Bayesian parameterisation at 
growth reconstructions is also confirmed by a gen-
eral comparison of the NLS vs. Bayesian efficiency 
regardless of the growth function used (Bayesian/
NLS column in Table 3). In five of the six growth 
functions, the RMSE of Bayesian parameterisa-

tion was lower by 15–30 %, (the exception is only 
the KM4 function), while in four cases, they were 
simultaneously accompanied by  a 20–60% smal- 
ler bias. 

The best growth function for a short-term five-
year backward reconstruction of the diameter 
growth of individual trees irrespective of the pa-
rameterisation method used is the new KM-3 func-
tion (Table 4, Fig. 1). This function, along with the 
application of Bayesian methods, is the most suc-
cessful function ever, from the viewpoint of the 
RMSE, and in combination with the NLS, it reach-
es the second lowest RMSE (Fig. 1). Although it is 
not the most successful function owing to the bias 
(its four-parameter variant KM4/NLS is better), its 
deviation is not extreme in both parameterisation 
methods. Consequently, the KM-3 function, irre-
spective of the parameterisation method used is an 
optimal selection from the aspect of the integrated 
aim of modelling. Another function, only slightly 
worse, is the R3 growth function with similar char-
acteristics, as for the particular aims of modelling. 
This function is characterized by a comparable 
bias. It has, however, a by about 10% higher RMSE, 
and is therefore worse also from the aspect of the 
integrated aims of modelling.

Discussion and Conclusions

The new KM-function is a model of the determi-
nate asymmetric growth initiating at the null size 
of an organism and ending at reaching its final size. 
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Since the KM-function reaches its starting and 
final sizes exactly, not only approaching them as-
ymptotically, the equation assumes the final length 
of the growth period. It acts in the equation as an 
independent parameter and on the basis of its clear 
biological interpretation; it can be empirically esti-
mated by means of maximum physical ages of the 
tree species under given natural conditions. At the 
beginning and at the end of the bounded growth 
period, the KM-function predicts the zero growth 
rate, whereas the period of growth rate culmina-
tion can occur at any time [ ]max,0 tt ∈  and value y. 
This is what makes this function theoretically well-
disposed for increased flexibility and opens a pos-
sibility of its application for the solution of a wider 
range of problems. 

A possible application of the new function is its 
use for a retrospective estimation of growth vari-
ables in the initial life stages of tree or stand. The 
obtained empirical results have confirmed the good 
theoretical efficiency of the new KM-function when 
it is used for short-term five-year reconstructions of 
tree diameter growth.  In its three-parameter ver-
sion (KM3) it is the best function of a set of com-
pared functions on a particular dataset irrespective 
of the modelling aim. On a particular database it is 
characterized by the lowest RMSE, more acceptable 
bias than the other compared functions and stable 
results in both parameterisation methods. 

In general, the new function performs better us-
ing Bayesian parameterisation. Such a fact indirectly 
demonstrates a greater level of biological realism in-
corporated in a new functional form. It is possible to 
hypothesize that the better biological interpretabil-
ity of some parameters of the new growth function 
has been manifested on a more correct elicitation of 
the a priori probability distributions of possible pa-
rameter values, thus contributing to a greater preci-
sion of growth retrospective extrapolations. 

Comparative analysis of growth functions and 
parameterisation methods on a particular dataset 
has also brought other relevant findings. Inductive 
study has shown that the application of simpler 
three-parameter growth functions in combination 
with the Bayesian parameterisation methods can 
be recommended for short-term reconstructions of 
the diameter growth of individual trees. The recom-
mendation to use simpler functions for the growth 
extrapolation was expected. For example Šmelko et 
al. (1992) pointed out that a simpler equation with a 
smaller number of parameters had better extrapola-
tion properties than more complicated forms which, 
on the other hand, fitted better to the measured 
values. The recommendation to apply the Bayesian 

methods was also expected, mainly from the aspect 
of the total error magnitude. An expected character-
istic feature of the Bayesian parameterisation com-
pared to the classical frequency school is a lower 
error magnitude in combination with a higher bias 
(Carlin, Louis 2000; Bock, Du Toit 2003). 

It is surprising, however, that the Bayesian param-
eterisation is evidently more suitable even from the 
aspect of bias for short-term reconstructions. Incor-
poration of the a priori information about possible 
values of the growth function parameters in their es-
timation leads to more realistic estimates of tree di-
ameter in early life stages in spite of the fact that the 
a priori distributions using the Bayes estimates open 
a possibility of introducing a bias in final estimates.

Overall, the theoretical analysis of properties of 
the new growth K-function and its comparison 
with functional forms of some classical growth 
functions have shown that the K-function can be 
considered as a mathematical model of the deter-
minate asymmetrical growth of living organisms 
in which, unlike other known growth functions, a 
parameter with unique interpretation – expected 
life span of an organism – is included. Empirical 
verification of the theoretical properties of the  
KM-function for specific retrospective extrapola-
tions of the tree diameter growth on a particular 
dataset has shown that the KM-function performed 
well (especially using the Bayesian parameterisa-
tion) and it is at least comparable with currently 
used functions. However, the promising empirical 
results for a particular dataset and rather specific 
application purpose must be further validated on 
larger empirical material and for a higher number 
of possible function uses, from which the long-
term extrapolation of growth in the future is pro-
bably most valuable. 
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