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Abstract: Owing to its role in mitigating CO, in the atmosphere, the total organic carbon (TOC) stock of soil,
a key component of the terrestrial carbon cycle, is of significant interest as regards climate change. To determine
TOC stock, it is first necessary to determine the soil's bulk density (BD), determined through intact soil sampling;
however, in forest soils, it can be difficult to determine BD in soils with high levels of stoniness and/or tree root
coverage. Furthermore, the method is time-consuming and labour-intensive, making it impractical for studies over
large areas. In such cases, BD can be determined using a pedotransfer function (PTF) expressing the relationship
between forest soil TOC and BD. The aim of this study was to determine a forest soil PTF using actual data ob-
tained from 777 soil pits dug as part of the Czech Republic's National Forest Inventory (NFI). Within the NFI,
BD is assessed from undisturbed core samples, while TOC is assessed from mixed samples from the same soil genetic
horizons. Both generalised linear (GLM) and generalised linear mixed-effects (GLMER) models were used, with
the final GLMER model best expressing the relationship for individual natural forest areas within the NFI dataset.
The GLMER-based PTF described in this study can be widely applied to accurately estimate soil BD via TOC concen-
tration at temperate forest sites where stoniness and/or root cover previously made it technically impossible to take
undisturbed samples using standard methods.

Keywords: carbon stock; climate change; Czech National Forest Inventory; Czech natural forest areas; soil properties;
soil stoniness

The total organic carbon (TOC) stock stored Lorenz, Lal 2010; FAO 2020), with approximately
insoilis akey component in the global carbon cycle. 299 504 million tonnes present in soils around
In terrestrial ecosystems, soil has the largest pro- the world (FAO 2020). Overall, forests tend
portion of stored carbon (Davidson, Janssens 2006;  to be of more importance than agrarian systems
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in terms of both quality and quantity of carbon
stock (Ferreiro-Dominguez et al. 2022; Valjavec
et al. 2022; Teixeira et al. 2024), though both car-
bon quality and quantity can vary greatly in forests
according to climate zone, vegetation type, land
use and management regime (Waqas et al. 2020;
Andreetta et al. 2023; Buczko et al. 2023; Maki-
paa et al. 2023; Roth et al. 2023; Sahu et al. 2023;
Wani et al. 2023).

Knowledge of soil TOC stocks and TOC frac-
tions (Koorneef et al. 2023; Krahl et al. 2023;
Wu et al. 2024), and how they change over time,
is of increasing importance in the light of ongo-
ing climate change as soil organic carbon capture
plays an important role in mitigating increasing
CO, concentration in the atmosphere (Scharle-
mann et al. 2014; Minasny et al. 2017). For exam-
ple, increasing atmospheric CO, has been shown
to increase the primary production of plant bio-
mass, leading to an increase in soil TOC stock
(Lloyd 1999; Schimel et al. 2015; Cheng et al. 2023;
Ziegler et al. 2023). Alongside increasing CO, con-
centrations, however, there has also been a gradual
increase in temperatures, which is of fundamental
importance for TOC as higher temperatures in-
crease the rate of organic material decomposition,
potentially decreasing soil TOC stocks (Wiesmeier
et al. 2013; Tashi et al. 2016; Kupka et al. 2023).

To obtain a general expression of soil TOC
(as well as other elements, nutrient stock, water
holding capacity or content of toxic substanc-
es), soil scientists apply equations based on the
mass of nutrient per unit mass of soil, the thick-
ness of the soil layer, the volume fraction of coarse
stone fragments and the soil's bulk density (BD),
defined as weight per unit volume (Hunting-
ton et al. 1989). BD is determined by measuring
the weight of a dry soil sample of known volume
sampled in such a way that the natural structure
of the sample is undisturbed. This is most of-
ten accomplished using a 100 cm? steel cylinder,
though other methods include the use of ham-
mer probes (Walter et al. 2016) or reflectometry
measurements (Bittelli et al. 2021). While the
steel cylinder method is accurate, it is both time-
consuming and laborious, making it unsuitable
for studies requiring BD assessments over large
areas. Furthermore, as the soil sample is obtained
through 'spot sampling’, the method is highly de-
pendent on soil spatial diversity, meaning that
many repetitions may be required to obtain rep-
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resentative values. Finally, BD assessment is of-
ten complicated by issues such as the presence
of stones or rock fragments and extensive tree
root systems (Throop et al. 2012), factors that can
make it effectively impossible to obtain intact soil
samples in forest soils. For example, while deter-
mining TOC stocks in forest soils for the second
Czech National Forest Inventory (NFI) between
2011 and 2015 (FMI 2024), 5 659 organo-mineral
and mineral soil horizons were sampled for chem-
ical analysis (note: organic horizon bulk density
was not determined in the NFI); however, it was
only possible to obtain intact soil samples for
BD from 1945 of those horizons, or just 34.4%.
Subsequently, samplers formulated an empirical
rule that suggested if the soil horizon comprised
> 25% stone fragments of 4 mm or larger, it would
be practically impossible to obtain an intact sam-
ple as the stones, together with forest vegetation
roots, created an impassable mechanical obstacle.
As a consequence, TOC stock values for Czech
forest soils were distorted by the reduced number
of samples obtained.

A potential solution to this problem would be the
use of a pedotransfer function (PTF) that allows
the determination of soil properties (e.g. BD) from
other soil properties or parameters, usually ob-
tained more cheaply and/or less laboriously than
classical methods (Van Looy et al. 2017; Szatmari
et al. 2023). PTFs are predictive statistical models
that use known relationships between different
soil properties to express unknown or unobtaina-
ble properties. In our study, we use the relationship
between BD and TOC concentration to establish
estimated BD values for soils where core samples
cannot be obtained. PTFs may also be complement-
ed with other available covariates (e.g. random ef-
fects, as used in linear mixed models) to underline
regional specificities in environmental conditions
(de Souza et al. 2016; Al-Shammary et al. 2018).
For example, in our area of interest, natural forest
areas, which differentiate the territory of the Czech
Republic based on specific regional differences
in soil-forming rocks, terrain geomorphology, cli-
mate and altitude class, could be used to differenti-
ate natural conditions.

The aim of this study, therefore, is to use a series
of linear models to establish a generalisable PTF
equation expressing the mathematical relationship
between soil TOC concentration and BD, based
on the wide range of organo-mineral and mineral
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bedrock/soil types represented in the third Czech
NFI forest soil sample database (FMI 2024). To en-
sure accuracy, the PTF equations will be validated
against known data from the area of interest (Nan-
ko et al. 2014; Palladino et al. 2022). We hypoth-
esise that (i) the much reduced mass ratio of soil
organic matter to mineral matter in typical forest
soils results in a negative relationship between
TOC and BD, and (ii) the inclusion of natural for-
est areas (NFAs) as spatial identifiers in the models
will provide a significantly better match to known
TOC/BD data for the sites.

MATERIAL AND METHODS

Sampling methodology. Data used to estab-
lish the TOC/BD relationship were obtained from
the third NFI cycle, which took place between
2016 and 2020 (FMI 2024). The dataset, which was
based on the NFI network covering all forests in the
Czech Republic, contained BD and TOC as contin-
uous variables with a spatial identifier as a categori-
cal variable. Natural forest areas (NFAs; Figure 1)
were chosen as the spatial identifier as they differ-
entiate the territory of the Czech Republic based
on regional differences in soil-forming rocks, ter-
rain geomorphology and climate at a regional level
(Pliva, Zlabek 1986). The NFAs were then further
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divided into altitude classes describing their geo-
graphic character based on relative elevation
[Demek et al. 2006; Table S1 in the Electronic Sup-
plementary Material (ESM)].

During the third NFI cycle, a complete soil survey
was undertaken at each inventory plot, including
excavation and description of a deep soil pit and
sampling of organo-mineral and mineral pedogenic
horizons greater than 2 cm in thickness and with
a stone content of < 25% for analysis of chemical
and physical soil properties. BD was determined
at each site by drying undisturbed soil samples, col-
lected with a 100 cm? steel cylinder at 105 °C for
24 h, after which reduced volumetric weight was
calculated according to Equation (1):

m

BD=" (1)
\%

where:

BD - bulk density (g-cm™3);

m — weight of the dried sample;

1% — sample volume (100 cm?).

The percentage content of soil TOC was deter-
mined by burning a soil sample in a stream of oxy-
gen at 1 100 °C in a PRIMACSSLC single-purpose
TOC analyser (PT Unitama Analitika Perkasa,
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Figure 1. Natural forest areas (NFAs) used as spatial identifiers differentiating the territory of the Czech Republic
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Indonesia). TOC is thereby oxidised to CO,, the
concentration of which is measured using non-dis-
persive infrared detection (NDIR).

In total, data were obtained for 1 945 soil samples
collected from 777 soil pits in 40 NFAs, the actual
number of samples taken from each pit varying de-
pending on the number of horizons, their thickness
and the presence of stones. Unfortunately, no sam-
ples could be taken from NFA 4 (Doupov Moun-
tains) as its relatively small area (69 711 ha) falls
almost completely within a military training area.
For obvious safety reasons (e.g. the presence of un-
exploded munitions), digging of soil pits and soil
samples was prohibited in this area.

Data analysis. All BD data (both that directly as-
sessed in the laboratory and that expressed by dif-
ferent models) were tested for normality using
the Shapiro-Wilk test and, where data normality
was not confirmed, the non-parametric Wilcoxon
two-tailed test was used. The relationship between
TOC and BD was then expressed using regression
analysis (Meloun et al. 2005).

To find the most accurate expression of BD
by TOC, we modelled BD using three differ-
ent methods. As natural conditions, including
edatopes, are specific to each NFA, the relationship
between TOC and BD was first quantified using
a generalised linear mixed-effect (GLMER) model
including NFA as random effect. Next, we used the
same GLMER excluding the random effect, i.e. us-
ing the global model only, and finally, we used
the simplified generalised linear model (GLM).
For the GLMER, statistical significance was as-
sessed using the Ime4’ (Bates et al. 2023) and 'per-
formance' (Liudecke et al. 2024) packages within
the R software environment (Version 4.3.1, 2023;
R Core Team 2000).

Equation (2) below represents the general model
equation:

1+ TOC
y ~ TOC + —— (2)
grouping 1
where:
y — bulk density (BD);
TOC — total organic carbon — fixed effect;

grouping 1 — grouping variable of random effect [in this
case, natural forest area (NFA)].

As the measured data were not normally distrib-
uted, and negative values are not allowed for trans-
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formed data, all data were transformed by Gamma
transformation with inverse link function prior
to analysis. Coefficients of determination were ex-
pressed as marginal R* (R ,,.), expressing the vari-
ability of the fixed effect only, and as conditional
R? (R?,,.,), expressing the variability of fixed and
random effects. As, in many cases, NFA turned
out to be a redundant component, the model was
simplified to a global GLMER by removing the
random effect.

To assess the significance of the random effect
(NFA), the GLM was constructed as BD ~ TOC,
using equal data transformation (gamma distri-
bution with inverse link), with Akaike's informa-
tion criterion (AIC; Akaike 1974) and coefficient
of determination (R?) used to assess model quality,
the latter expressing how much of the total vari-
ance was explained by the model. In this case, the
best model would have the lowest AIC value and
highest R

Graphic outputs were prepared using the 'ggplot2’
package in the R statistical environment (Wickham
et al. 2020), with box plots showing the 1% and
3™ quartiles and the median value and the whisk-
ers 1.5 times the 1t and 3" quartiles. All statisti-
cal tests were performed at a significance level
of a = 0.05.

RESULTS

TOC values in the dataset had a strong left-sided
distribution, with more than 1 200 of the 1 945 to-
tal samples (i.e. 62%) having a TOC value of < 2%
(Figure 2A). In comparison, BD data for reduced
soil samples displayed a slightly right-skewed dis-
tribution (Figure 2B).

For individual NFAs, most areas had > 75% of all
TOC values at < 5%, with just four NFAs (NFAs 13,
14, 22, and 27) having noticeably higher TOC con-
centrations (Figure 3A). Interestingly, the distribu-
tion of BD in individual NFAs indicated that the
four NFAs with the highest TOC content had
the lowest BD values (Figures 3A, B).

Overall, the GLMER expressed approximately
65% of total variability when both fixed and ran-
dom effects were included, and approximately 61%
of variability when only fixed effect was included
(Table S2 in the ESM). While the GLM accounted
for approximately 55% of variability, the GLMER
AIC value was markedly lower than that for GLM
(—682.99 vs. —850.4; Table S2 in the ESM).
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Figure 2. Distribution of soil (A) total organic carbon (TOC) values and (B) bulk density (BD) in the third National Forest
Inventory (NFI) dataset
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Figure 3. Box plots showing the distribution of (A) soil total organic carbon values (TOC) and (B) bulk density (BD) for
individual natural forest areas (NFAs)
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The resulting equations for BD and TOC after
fitting the global model parameters are presented
below as Equations (3) and (4):

BD = (b +a x TOC)! (3)

TOC = —L 42 @)
axBD a

where:

a — slope (0.088349);

b — intercept (0.668562).

When NFA was included as random effect, the
equation then became Equation (5):

BD = [(b + bypa) + (a + aygp) x TOC]! (5)
where:
ayea — slope of the random effect;

byea — intercept of the random effect.

A comparison of the TOC/BD regressions pro-
duced by the GLM and global GLMER provided

2.0 A

1.5 A

BD (g-cm™)

1.0 A

0.5 A

https://doi.org/10.17221/48/2024-JES

very similar results (Figure 4), with the GLM in-
tercept being only slightly higher than that for
GLMER with a systematic shift of ca. + 0.2 g-cm™
on the y axis.

At the NFA level, the regressions were even
closer, with GLM and GLMER regressions for
almost all NFAs (except NFA 14 Novohradské
Mountains) overlapping (Figure 5). In almost all
cases, both models showed a high degree of de-
termination, as indicated by the very narrow 95%
confidence intervals.

Individual NFAs differed significantly in both
the number of locations sampled and the range
of both TOC and BD values (P < 0.05 for both
slope and intercept in all cases; Figure 5), with
the lowest maximum TOC value (approx. 3%)
recorded at NFA 11 (Bohemian Forest) and high-
est (approx. 19%) at NFA 15 (South Bohemia
Basins). Though values this high occurred only
rarely, NFA 13 (Sumava Mountains) displayed
consistently higher TOC concentrations than all
other sites.

When comparing the GLMER and laboratory-
measured results for BD, values for most NFAs were

= GLM
== global GLMER

0 10
TOC (%)

20

Figure 4. Comparison of results for the global generalised linear mixed-effects model (global GLMER) and generalised

linear model (GLM)
BD - bulk density; TOC — total organic carbon
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Figure 5. Comparison of generalised linear mixed-effects model (GLMER, solid line) and generalised linear model (GLM,

dashed lines with confidence intervals) runs for each natural forest area (note strong overlap)

Grey shaded area — 95% confidence levels; points — measured laboratory values; BD — bulk density; TOC - total organic carbon

very close, with median residual values close to zero
and delta only exceeding + 0.5 g-cm~ exceptionally
(eight values < —0.5 and ten values > 0.5; Figure 6).
When expressed as percentage difference, however,
these numbers were reduced, with seven NFAs dis-
playing values more than 100% higher than labo-
ratory values, and just two (NFAs 5 and 23) more
than 200% higher. An exceptional case was the val-
ues for NFA 14 (Novohradské Mountains), where
a large difference between laboratory and model

values was probably due to the low number of val-
ues measured (n = 3), one of which was very low
(BD = 0.38 g-cm™3).

A summary comparison of GLMER and GLM
residuals as absolute and percentage values for
all NFAs combined confirmed the GLMER model
as more accurately describing the BD/TOC rela-
tionship (Figures 7A-D). While all medians were
close to zero, as with the GLMER model, percent-
age residual values for the global GLMER and GLM
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Figure 6. Box plots showing differences between modelled and laboratory-measured bulk density values for each natural
forest area (NFA), calculated using the generalised linear mixed-effects model (GLMER)

BD - bulk density

models were skewed, with 16 values exceeding 67%
difference (maximum percentage among nega-
tive residual values; Figure 7B). However, GLM
residuals displayed a wider range of positive and
negative values, with values exceeding 250% (Fig-
ures 7C, D). As these outliers did not originate from
less-represented NFAs with a low number of values
(e.g. NFA 14), they clearly represent increased vari-
ability in edaphic conditions.

Regressions expressing the relationship be-
tween laboratory-measured BD and GLMER-
modelled BD for individual NFAs indicated that,

(A) GLMER (B) GLMER
Lo 250 -
200 -
05
150
£ S
o 00 é: 100 1
Q
Q 50 A
~0.5
0 -
~1.0 =50 1

for almost all NFAs, the model provided an ex-
cellent fit to the pre-measured data, though both
the model and measured data fell slightly be-
low the ideal curve (Figure 8). Exceptions includ-
ed NFA 22 (Krkono$e Mountains) and NFA 27
(Hruby Jesenik Mountains), which displayed
a higher intercept and lower slope, while NFA 14
(low number samples) had a lower intercept but
an almost ideal slope. In all these cases, however,
the ideal curve still lay within the 95% confidence
intervals. Overall, the results suggest that while
model quality is not necessarily dependent on the

(C) GLM (D) GLM
1.0 - 250 1
200 -
0.5 -
~ 150
; g
5 00 a 100 A
Q
Q 50 A
-0.5 -
0 .
~1.0 =07

Figure 7. Box plots showing residuals for the generalised linear mixed-effects model (GLMER) as (A) absolute values and
(B) percentage, and generalised linear model (GLM) as (C) absolute values and (D) percentage

BD - bulk density
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Figure 8. Regressions for laboratory-measured bulk density (BD lab) and GLMER-based BD model, for individual natural
forest areas

The red line represents the ideal match between measured and theoretical values; thus, if the points in the graph lie exactly

on the straight line, the measured and model values are the same

number of samples, its range of applicability may
be low for NFAs with few values, e.g. NFA 3 (Kar-
lovy Vary Highlands).

In almost all cases, there was no significant differ-
ence between data sets of different origins grouped

by NFA (P > 0.05; Figure 9). Note, however, that sig-
nificant differences were recorded between GLM-
ER and GLM (P < 0.05) and between laboratory
values and GLMER (P < 0.05) for NFAs 16 and 17
(Figure 9).

627


https://jfs.agriculturejournals.cz/
https://doi.org/10.17221/48/2024-JFS

Journal of Forest Science, 70, 2024 (12): 619-633

Original Paper
https://doi.org/10.17221/48/2024-JES
1 2 3 5 6 7 8
3 7 s 7] ns n 7] ] ns n ] ns
nsns ns ns nsns a8 ns nns
ns ns ns ns ns ns ns
ns nsns ns ns nsl’lS ﬁg ns
2 ns 1 ns = nsns _ nsns ns = ns -1 ns
ns ns
1_ - — - - — -
L T 11 T 11 T 11 T 11 L T 11
o2T° xS 2T xS 27T XS 29 xS 2T xS T xS 2T xS
S 5ES S EES S 5ES S 5E3 S 5ES S 5ES S EES
220 2320 220 220 2320 220 £20
] e~ =] > o e~ o e~ 8~ = o e~ 2~ ]
s =73 s =73 =3 3 =73 3 =3 3 =3 3 =73
= = = = = = = = = = = = = =
9 10 11 12 13 14 15
ns
ns
3 38 y ns N y y N y ns®
ns ns ns ns ns
ns ns ns ns ns ns ns
ns ns ns ns ns ns ns
ns ns ns ns ns ns
9 o bs - — ns — ns -1 nnS 1 L
ns ns s ns
ns
1 4 _ . _ _ . _
T T 11 T T T 1 T T T 1 LI T T T 1 T T 11 T T T 1
29 xS 2T xS o9 % 29 xS 2T xS o9 X 29 xS
< 5ES 2 5ES é"%%é S 5ES <553 ﬂ’ﬁ%é < 5ES
2 B0 238U 238U 23U 23U SR = BRSHY)
— ’UE—U 'UE-U '\:JE—U ’Uz-c 'Uz—c ’GE—U 'UE-U
& 3 3 <} 5] <] 3 <} 3 s) 3 3 3 <} S)
) 5% 3 %3 553 573 553 5% 3 %2
3}
50
2
Q 16 17 18 19 20 21 22
m ns
- ne - . - ns - ns - - -
3 ns s ns ns ne'® ns® ns
* ns ns ns ns ns ns
- ns ns ns ns ns
- - - - - - - ns
2 ns ns ns
1 4 _ . _ _ . _
T T 11 T T T 1 T T T 1 LI T T T 1 T T 11 T T T 1
o9 % 2T xS o9 % 29 RS 2T xS o9 % 29 xS
25%5 S 5ES ﬂ‘é%é 2 5E3 S 5ES ﬂ’ﬁ%g S 5ES
2 50 o0 %309 o0 230 232U 23U
=] s~ o > o o =] e~ o < o o o ]
3= 3 3 =3 3 =3 3=3 3 =3 3 =3 3=3
= = = = = = = = = = = = = =
23 24 25 26 27 28 29
ns ns
- ns - - - ns - - E ns
3 ns s s’ ns ns” ns
ns ns ns ne ns ns ns
s ns" ns"® ns ns° ns ns
2 1 - ns -1 bs 1 ns —| ns -1 ns
=
1 4 _ . _ _ . _
T T 11 T T T 1 T T T 1 LI T T T 1 T T 11 T T T 1
8EE2  2TE3 2IE3 BTEI BEEE O EEEE BIEC
S 5 = S = = S =5 = S = = S =5 = S =5 = S = =
2 50 U %39 U 230 232U 23U
=] s~ o > o 2~ o e~ = e~ o o o ]
3=3 3 =3 3 =3 3=3 3 =3 3 =3 3=3
= = = = = = = = = = = = = =

Data source

Figure 9. Wilcoxon two-tailed tests for data sets of different origins grouped by individual natural forest areas; box plots
show bulk density (BD) calculated using (i) laboratory-measured values (lab), (if) the generalised linear model with
random effects (GLMER; ModRand), (iii) the global GLMER including fixed effects only (ModFix), and (iv) the simple

generalised linear model (ModGLM)
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Figure 9. To be continued

*P = 0.01-0.05; **P = 0.001-0.01; ns — not significant

DISCUSSION

TOC values at NFAs 13 (Sumava Mountains),
14 (Novohradské Mountains), 22 (Krkono$e Moun-
tains) and 27 (Hruby Jesenik Mountains) were all
markedly higher than those at other sites, while
those at NFA 1 (Ore Mountains), NFA 21 (Jizer-
ské Mountains), NFA 25 (Orlické Mountains),
NFA 29 (Nizky Jesenik Mountains) and NFA 40
(Moravskoslezské Beskydy Mountains) all being
slightly higher. Notably, all of these NFAs are sit-
ed in mountainous areas. These results align with
those of Sarkodie et al. (2023), who also recorded
higher TOC concentrations in mountainous areas
and concluded that altitude was the most impor-
tant parameter for predicting TOC stocks in Czech
forest soils. A similar relationship between alti-
tude and increased soil TOC has also been ob-
served in other parts of the world (e.g. Tashi
et al. 2016; Chen et al. 2023). In our case, however,
altitude may be considered a surrogate param-
eter as the actual amount of TOC in soil will have
been heavily influenced by climatic factors, such
as temperature and/or humidity (Bu et al. 2012;

Wiesmeier et al. 2013; Kupka et al. 2023), which are
strongly correlated with altitude (Drewnik 2006).
On the other hand, we also recorded high TOC val-
ues at NFA 2 (Podkrusnohorské Basins), a low-alti-
tude area. In this case, the high TOC values could
be attributed to the forest stands being located
on areas reclaimed from surface mining of brown
coal. More than half of the samples taken at NFA 2
came from Technosols, some of which had TOC
values far above average levels for natural forest
soils, presumably caused by the mine waste and
materials brought in for site reclamation.

As hypothesised, we observed a clear negative
mutual dependence between BD and TOC in Czech
forest soils (Figures 3A, B), with the lowest BD val-
ues (NFA 13, 14, 22, and 27) found in areas with
highest TOC values and, conversely, areas with low-
er TOC values having higher BD values. This same
negative correlation between BD and TOC was also
confirmed by Stavi et al. (2008), Patton et al. (2019),
Harbo et al. (2022), and Xiao et al. (2024).

A range of different methods have been used
in the past to express this negative relationship
between BD and TOC, including non-linear ex-
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ponential models (Harbo et al. 2022), multiple lin-
ear regressions (Palladino et al. 2022) and GLMs
(Stavi et al. 2008). There have also been a number
of studies comparing several different models for
expressing the BD/TOC relationship on the same
dataset, e.g. Crnobrna et al. (2022), who tested
nine different models and found the 'ideal mix-
ing model' to be best, and Sevastas et al. (2018),
who compared 56 models and found the 'regres-
sion tree-based model' to be most accurate. In our
own study, we compared GLMER and GLM mod-
els on a standard dataset and found that, overall,
GLMER provided the best fit to the dataset due
to the positive influence of using NFAs as a ran-
dom effect in the model. In this case, the model
considers the influence of regional and local dif-
ferences in natural conditions, e.g. geological sub-
strate and soil, in each NFA, rather than using
averaged conditions for the whole Czech Repub-
lic. Nevertheless, we found close agreement be-
tween mean BD values expressed by the GLMER
and GLM models (Figure 9), the only exceptions
being NFA 16 (Bohemian-Moravian Highlands)
and NFA 17 (the Polabi region), both of which
had a high number of repetitions (NFA 16 = 218,
NFA 17 = 206). At NFA 16 in particular, both TOC
concentration and BD fell within the higher range
of values, presumably due to the more diverse nat-
ural conditions found at this site. While differenc-
es in the mean values differed by + 0.015 g-cm™3,
differences at the other NFAs were even more
pronounced, suggesting that the ecological signifi-
cance of differences in mean values were compa-
rable with those for median values. As such, the
values may be considered marginal in comparison
to overall variability in the inventory data in re-
lation to forest stand edatope ecological charac-
teristics. Similar conclusions were also reported
by Tellen and Yerima (2018), who found that the
marginality of variability was up to one order
of magnitude higher in a study testing soil proper-
ties in relation to different types of land use.

CONCLUSION

In this study, we compared three linear mod-
els (GLM, GLMER with and without random ef-
fects) to establish a PTF equation expressing the
relationship between soil TOC concentration
and BD, based on the organo-mineral and mineral
bedrock/soil types presented in the third Czech
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NFI forest database (FMI 2024), calibrating and
validating the model outputs against known data
to ensure accuracy.

The PTF based on a GLMER with NFAs as mixed
(random) effect provided best overall results (ex-
plaining 65% of variability). While differences
in output between GLMERs with and without ran-
dom effects were not great, the inclusion of Czech
natural forest area (NFA) data as a random effect
to differentiate regional differences provided no-
ticeably better results, thereby confirming our hy-
pothesis. It should be noted, however, that while
our BD test samples were obtained from undis-
turbed core samples, as in previous studies (Hun-
tington et al. 1989; Périé, Ouimet 2008; Sakin 2012),
TOC content was assessed from a mixed (dis-
turbed) sample, though both were obtained from
the same genetic horizon. As such, the model pa-
rameters may not have the same predictive power
as one where BD and TOC values originate from
the same sample, though further tests will be need-
ed to confirm this (Kucera et al. 2024).

Overall, therefore, the validated PTF put forward
in this paper can be used with confidence to pro-
vide accurate assessments of BD from TOC, or vice
versa, from a variety of organo-mineral and miner-
al temperate forest soils, particularly in those areas
where stony soils or extensive root systems have
previously prevented collection of standard intact
soil samples, and allow more accurate determina-
tion of conservation and climate change factors,
such as whether forest soil TOC differs between
lowland, hilly and mountainous areas or over time.
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