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ABSTRACT

Paddy rice is one of the most important cereal crops in China. Nitrogen (N) is closely related to crops production
by influencing the photosynthetic efficiency of paddy rice. In this study, laser-induced fluorescence (LIF) technolo-
gy with the help of principal component analysis (PCA) and back-propagation neural network (BPNN) is proposed
to monitor leaf N content (LNC) of paddy rice. The PCA is utilized to extract the characteristic variables of LIF
spectra by analysing the major attributes. The results showed that the first three principal components (PCs) can
explain 95.76% and 93.53% of the total variance contained in the fluorescence spectra for tillering stage and shoot-
ing stage, respectively. Then, BPNN was utilized to inverse the LNC on the basis of the first three PCs as input vari-
ables and can obtain the satisfactory inversion results (R? of tillering stage and shooting stage are 0.952 and 0.931,
respectively; residual main range from —0.2 to 0.2 mg/g). The experimental results demonstrated that LIF technique
combined with multivariate analysis will be a useful method for monitoring the LNC of paddy rice, which can pro-

vide consultations for the decision-making of peasants in their N fertilization strategies.
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Paddy rice plays a significant role in the national
economy in China. Thus, it is an important mis-
sion to improve crop productions. At present,
investigators found that nitrogen (N) is one of the
most important elements for improving the crop
yields. Farmers also tend to increase the dose of
N fertilization to boost paddy rice production.
However, utilization efficiency of N fertilization
will decrease with increasing dose of N fertiliza-
tion, which will cause environmental pollution
and nitrate leaching issues (Olszewski et al. 2014).
Therefore, a large number of researches have been
done to monitor the leaf N content by passive and

active technologies for guiding the application of
N fertilization (Feng et al. 2008, Gong et al. 2012).

Passive remote sensing technology depends on
the effect of the nutrient stress of crops on the
characteristic wavelengths (Feng et al. 2008). A
number of papers reported utilizing of reflective
spectra for monitoring the LNC of crops. The rea-
son is that the LNC has a certain correlation with
reflectance, and can be accurately monitored by
using a vegetation index (Cao et al. 2013). However,
it is restricted by many factors, such as weather
condition, measurements time etc. In order to
address these shortages, Gong et al. (2012) pro-

Supported by the National Natural Science Foundation of China, Grant No. 41127901; by the Program for Innovative
Research Team in University of Ministry of Education of China, Project No. IRT1278.

178



Plant Soil Environ.

Vol. 62, 2016, No. 4: 178-183

posed multi-spectral Lidar for the remote sensing
of vegetation. Due to high capability of recording
the physiology of the canopy, it was largely applied
to monitor the nutrient stress of crops. In addition,
passive fluorescence and luminescent method were
also employed to detect nutrient stress of crops
(Meroni et al. 2009, Aleksandrov et al. 2014). It is
motivated by the link of fluorescence to photosyn-
thetic efficiency which could be utilized for large
scale detection of crops status.

In recent decades, the laser-induced fluorescence
(LIF) technology was proposed and used to track
the status of crops (Chappelle et al. 1984). Related
studies showed that the characteristic peaks of
LIF spectra were closely related to the nutrient
stress of crops (Tuba et al. 2010, Yang et al. 2015a).
Due to the advantages of rapid, non-destruction
and without pre-processing analysis, it has been
widely used to estimate canopy N status of maize,
tomato, wheat and paddy rice (Kalaji et al. 2014,
Yang et al. 2015b, Zivédk et al. 2014a). However,
they mainly focused on using the far-red and red
fluorescence ratios, fluorescence intensity as well
as non-photochemical quenching etc. to detect
the nutrients changes of crop (Tremblay et al.
2011). The fluorescence spectra combined with
multivariate analysis is still sparse at present.
Therefore, the main objective of this study was
to inverse LNC based on LIF spectra combined
with principal component analysis (PCA) and
back-propagation neural network (BPNN).

In this study, the LIF spectrum of paddy rice leaf
was measured by using the laboratory building
system. Then, the PCA was utilized to analyse these
fluorescence spectra and extract the characteristic
variables. Finally, paddy rice LNC was inversed by
using BPNN on the basis of the PCs as variables.
The R? of the linear regression analysis between
the predicted and measured values can be up to
0.952 and 0.931, which corresponds to tillering
stage and shooting stage, respectively. Thus, the
LIF technique with the help of PCA and BPNN
can be used to monitor the variation of paddy rice
LNC, which can guide farmers to rapidly rectify
the insufficient N content in the field.

MATERIAL AND METHODS

Experimental areas. The experimental area is
located in the Junchuan county, Suizhou city, Hubei
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province, China which is situated in the middle
reaches of the Yangze River. The area is a typical
subtropical monsoon climate, cold in winter, hot
in summer. The annual rainfall is over 1200 mm,
and annual sunshine duration exceeds 1800 h.
Thus, it is suitable for growing paddy rice and
is also well known as one of the most important
agricultural production base in China. The paddy
rice cultivar was Yongyou 4949, which was seeded
on 27 April, 2014 and then transplanted to field
on 1 June. The samples were collected on 15 July
and 1 August, which signifies tillering stage and
shooting stage, respectively.

Measured system. The LIF apparatus mainly
contains of three parts. The first section is the
excitation light source which consists of an Nd:YAG
laser (the output energy of laser is 1.5 m]J, the
emission wavelength is 355 nm, the per pulse du-
ration and repetition frequency is 3 ns and 20 Hz,
respectively). The second part is an optical receiver
assembly. The LIF signal is collected by using a
single-mode optical fiber with a 25° angular field
of view and diameter of 200 pm. The emission
fluorescence spectra enter the spectrometer after
being through long-pass filter of 355 nm and then
measured by using an intensified charge coupled
device (ICCD). The fluorescence spectra range
from 360 to 800 nm with 0.5 nm sampling interval.
The last section is the data processing system.
The measured fluorescence signals are stored in
a personal computer for post-processing.

Measurements of LNC. All samples were imme-
diately sent to the Wuhan Academy of Agricultural
Science and Technology for measurement of LNC
after measuring the fluorescence spectra. The
Kjeldjahl method was utilized to determine the
LNC (Yi et al. 2007).

Methods. PCA combined with BPNN was utilized
to analyse the correlation between the fluorescence
spectra and paddy rice LNC. PCA is one of the most
useful multivariate analysis tools. The major objective
of PCA is to establish the linear combinations of the
original variables and extract the useful information
from the original data by reducing the dimensional-
ity of original data. The variables can be reduced by
eliminating the overlapping components and the most
important information contained in the original data
is retained by PCA (Yi et al. 2007). Therefore, PCA
has been widely used to perform multi-spectral data
in the field of remote sensing, and it is also suitable
to analyse fluorescence spectra in this study.
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In order to analyse the performance of PCs as
variables, the BPNN model was utilized to estimate
LNC. Each processing unit of BPNN calculates
weighted inputs and then applies a linear or non-
linear function to the resulting sum to determine
the output (Zong et al. 2014). In addition, it also
exhibits the advantage of the input signals stimu-
lating network capability to patterns recognition
(Samborska et al. 2014, Yang et al. 2015b). All
fluorescence spectra were consisted of 216 sets
of data (108 sets for each growth stage), which
were randomly divided into two sections: 70% as
the training set for training BPNN model and the
other 30% as the validation set to test the tentative
performance of BPNN.

RESULTS AND DISCUSSION

LIF spectra. The LIF spectra are normalized to
1 at 460 nm and chlorophyll fluorescence wave-
length ranges from 650 nm and 800 nm, centring
at 685 nm and 740 nm (Figure 1). According to
previous investigations (Chappelle et al. 1991),
the fluorescence peak at 685 nm is attributed to
chlorophyll a associated with photosystem II, the
other fluorescence peak at 740 nm is correspond-
ing to antenna chlorophyll of both photosystem I
and photosystem II. Figure 1 illustrates that the
fluorescence intensity at 740 nm is more intensive
than that at 685 nm (Apostol et al. 2007). The reason
is that the fluorescence emitted between 684 nm
and 695 nm was more strongly reabsorbed by the
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Figure 1. The relationship between the normalized
fluorescence intensity (normalized to 1 at 460 nm) and
the wavelength under different paddy rice leaf nitrogen
content (mg/g)
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Table 1. Percentage of the explained variance for the
first three principal components (PCs) for different
growth stages of paddy rice. PC1, PC2 and PC3 capture
the abundant information contained in the LIF spectra

Tillering stage Shooting stage
EV (%) CV (%) EV (%) CV (%)
PC1 81.49 81.49 85.59 85.59
PC2 11.35 92.84 5.96 91.55
PC3 2.92 95.76 1.98 93.53

EV — explained variance; CV — cumulative variance

chlorophyll pigment in the upper layer leaf cells.
Thus, chlorophyll pigment displayed little influ-
ence to fluorescence peak at 740 nm (Malenovsky
et al. 2009). From Figure 1, it can be known that
the fluorescence spectra between 650~800 nm
increased with the increase of paddy rice LNC.
Thus, the LIF technology can be used to monitor
the LNC of paddy rice in this study. As shown in
Figure 1, the fluorescence spectra exhibited similar
changing tendency with the studies of Zivéak et
al. (2014b).

Analysis of PCA. In this study, PCA was utilized
to reduce the dimensionality of the fluorescence
spectra and extract the characteristics vectors by
analysing internal correlation of data. All 216 sets
of the fluorescence spectra with different paddy rice
LNC were analysed by using PCA. The explained
variance (EV) and cumulative variance (CV) of the
first three eigenvalues of the fluorescence spectra
for the different growth stages of paddy rice were
listed in Table 1.

From the Table 1, it can be known that 95.76%
and 93.53% of the total variance can be explained
by using the accumulated weight value of the first
three major factors for the tillering stage and shoot-
ing stage, respectively. Thus, all fluorescence char-
acteristics can be represented by using the first
three PCs. In order to better comprehend the
efficiency of PCA for describing the fluorescence
spectra, the loading plots of the first three PCs
were displayed in Figure 2.

Figure 2 is the weight of the PCA of fluorescence
spectra under different LNCs. It can be known
that the PC1 and PC2 are mainly attributed to the
fluorescence spectra at 545, 687, 740 and 743 nm.
Thus, it further demonstrates that the first three
PCs include a large number of information con-
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Figure 2. The loading plots of the first three principal components for different growth stages: (a) tillering stage;

(b) shooting stage

tained in the fluorescence spectra, which can be
utilized to further analyse the paddy rice LNC.
Estimation of LNC. The first three PCs were set
as input variables, a three-layer BPNN model was
used to estimate the paddy rice LNC. This network
architecture consisted of three parts: one input
layer, one hidden layer and one output layer (Yi et
al. 2007). The fluorescence spectra of each growth
stage (tillering stage and shooting stage), the 76
sets out of 108 sets were utilized to train BPNN
model. The remaining 34 sets were employed to
test the performance of the model. The results of
inversion LNC were displayed in Figure 3.
Figure 3 exhibited the relationship between the
predicted and observed LNCs for the different
growth stages of paddy rice. The solid line denotes
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the linear regression for the predicted and observed
values. The R? of the linear regression analysis
between the predicted and measured values can
be up to 0.952 and 0.931 for tillering stage and
shooting stage, respectively. The predicted results
were nearly in accordance with the line of 1:1,
which means the PCA combined with BPNN can
be utilized to analyse the correlation between the
fluorescence spectra and LNC.

Analysis of accuracy and precision. In order
to quantitatively evaluate the accuracy of the pre-
dicted results, the residual is utilized in this study.
Residuals of the predicted values represented the
differences between the predicted and observed
values. Figure 4 showed the residual of predictive
LNC and it mainly ranged from —0.2 to 0.2 mg/g.
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Figure 3. The relationship between the observed and predicted leaf nitrogen content (LNC) based on the first three
principal components for different growth stages: (a) tillering stage; (b) shooting stage. The dot line is the 1:1 line
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Figure 4. The residual of predictive paddy leaf nitrogen content (LNC) on the basis of three principal components

for different growth stages: (a) tillering stage; (b) shooting stage

Therefore, the experimental results (Figures 3
and 4) demonstrated that the LIF technology with
the help of PCA and BPNN can be employed to
precisely inverse paddy rice LNC.

In conclusion, the fluorescence spectra of paddy
rice increased with the increase of LNC, which can
be utilized to monitor the change of paddy rice
LNC. Thus, PCA, which was utilized to extract the
characteristic variables by analysing the major at-
tributes, combined with BPNN was used to inverse
LNC based on LIF technology. The R? of the linear
regression between the predicted and measured
values of the tillering stage and shooting stage are
0.952 and 0.931, respectively. All residuals mainly
range from —0.2 to 0.2 mg/g. The experimental
results demonstrated that LIF technology with the
help of multivariate analysis is a potentially useful
method for monitoring N content of paddy rice. If
more fluorescence spectra with different growth
environments and cultivars were obtained, it will
improve the universality of the model. Then, it can
provide support for the N fertilization strategies
and reduce the environmental pollution caused
by over-fertilization.
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