
Paddy rice plays a significant role in the national 
economy in China. Thus, it is an important mis-
sion to improve crop productions. At present, 
investigators found that nitrogen (N) is one of the 
most important elements for improving the crop 
yields. Farmers also tend to increase the dose of 
N fertilization to boost paddy rice production. 
However, utilization efficiency of N fertilization 
will decrease with increasing dose of N fertiliza-
tion, which will cause environmental pollution 
and nitrate leaching issues (Olszewski et al. 2014). 
Therefore, a large number of researches have been 
done to monitor the leaf N content by passive and 

active technologies for guiding the application of 
N fertilization (Feng et al. 2008, Gong et al. 2012).

Passive remote sensing technology depends on 
the effect of the nutrient stress of crops on the 
characteristic wavelengths (Feng et al. 2008). A 
number of papers reported utilizing of reflective 
spectra for monitoring the LNC of crops. The rea-
son is that the LNC has a certain correlation with 
reflectance, and can be accurately monitored by 
using a vegetation index (Cao et al. 2013). However, 
it is restricted by many factors, such as weather 
condition, measurements time etc. In order to 
address these shortages, Gong et al. (2012) pro-
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ABSTRACT

Paddy rice is one of the most important cereal crops in China. Nitrogen (N) is closely related to crops production 
by influencing the photosynthetic efficiency of paddy rice. In this study, laser-induced fluorescence (LIF) technolo-
gy with the help of principal component analysis (PCA) and back-propagation neural network (BPNN) is proposed 
to monitor leaf N content (LNC) of paddy rice. The PCA is utilized to extract the characteristic variables of LIF 
spectra by analysing the major attributes. The results showed that the first three principal components (PCs) can 
explain 95.76% and 93.53% of the total variance contained in the fluorescence spectra for tillering stage and shoot-
ing stage, respectively. Then, BPNN was utilized to inverse the LNC on the basis of the first three PCs as input vari-
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vide consultations for the decision-making of peasants in their N fertilization strategies.
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posed multi-spectral Lidar for the remote sensing 
of vegetation. Due to high capability of recording 
the physiology of the canopy, it was largely applied 
to monitor the nutrient stress of crops. In addition, 
passive fluorescence and luminescent method were 
also employed to detect nutrient stress of crops 
(Meroni et al. 2009, Aleksandrov et al. 2014). It is 
motivated by the link of fluorescence to photosyn-
thetic efficiency which could be utilized for large 
scale detection of crops status.

In recent decades, the laser-induced fluorescence 
(LIF) technology was proposed and used to track 
the status of crops (Chappelle et al. 1984). Related 
studies showed that the characteristic peaks of 
LIF spectra were closely related to the nutrient 
stress of crops (Tuba et al. 2010, Yang et al. 2015a). 
Due to the advantages of rapid, non-destruction 
and without pre-processing analysis, it has been 
widely used to estimate canopy N status of maize, 
tomato, wheat and paddy rice (Kalaji et al. 2014, 
Yang et al. 2015b, Živčák et al. 2014a). However, 
they mainly focused on using the far-red and red 
fluorescence ratios, fluorescence intensity as well 
as non-photochemical quenching etc. to detect 
the nutrients changes of crop (Tremblay et al. 
2011). The fluorescence spectra combined with 
multivariate analysis is still sparse at present. 
Therefore, the main objective of this study was 
to inverse LNC based on LIF spectra combined 
with principal component analysis (PCA) and 
back-propagation neural network (BPNN).

In this study, the LIF spectrum of paddy rice leaf 
was measured by using the laboratory building 
system. Then, the PCA was utilized to analyse these 
fluorescence spectra and extract the characteristic 
variables. Finally, paddy rice LNC was inversed by 
using BPNN on the basis of the PCs as variables. 
The R2 of the linear regression analysis between 
the predicted and measured values can be up to 
0.952 and 0.931, which corresponds to tillering 
stage and shooting stage, respectively. Thus, the 
LIF technique with the help of PCA and BPNN 
can be used to monitor the variation of paddy rice 
LNC, which can guide farmers to rapidly rectify 
the insufficient N content in the field.

MATERIAL AND METHODS

Experimental areas. The experimental area is 
located in the Junchuan county, Suizhou city, Hubei 

province, China which is situated in the middle 
reaches of the Yangze River. The area is a typical 
subtropical monsoon climate, cold in winter, hot 
in summer. The annual rainfall is over 1200 mm, 
and annual sunshine duration exceeds 1800 h. 
Thus, it is suitable for growing paddy rice and 
is also well known as one of the most important 
agricultural production base in China. The paddy 
rice cultivar was Yongyou 4949, which was seeded 
on 27 April, 2014 and then transplanted to field 
on 1 June. The samples were collected on 15 July 
and 1 August, which signifies tillering stage and 
shooting stage, respectively.

Measured system. The LIF apparatus mainly 
contains of three parts. The first section is the 
excitation light source which consists of an Nd:YAG 
laser (the output energy of laser is 1.5 mJ, the 
emission wavelength is 355 nm, the per pulse du-
ration and repetition frequency is 3 ns and 20 Hz, 
respectively). The second part is an optical receiver 
assembly. The LIF signal is collected by using a 
single-mode optical fiber with a 25° angular field 
of view and diameter of 200 µm. The emission 
fluorescence spectra enter the spectrometer after 
being through long-pass filter of 355 nm and then 
measured by using an intensified charge coupled 
device (ICCD). The fluorescence spectra range 
from 360 to 800 nm with 0.5 nm sampling interval. 
The last section is the data processing system. 
The measured fluorescence signals are stored in 
a personal computer for post-processing.

Measurements of LNC. All samples were imme-
diately sent to the Wuhan Academy of Agricultural 
Science and Technology for measurement of LNC 
after measuring the fluorescence spectra. The 
Kjeldjahl method was utilized to determine the 
LNC (Yi et al. 2007).

Methods. PCA combined with BPNN was utilized 
to analyse the correlation between the fluorescence 
spectra and paddy rice LNC. PCA is one of the most 
useful multivariate analysis tools. The major objective 
of PCA is to establish the linear combinations of the 
original variables and extract the useful information 
from the original data by reducing the dimensional-
ity of original data. The variables can be reduced by 
eliminating the overlapping components and the most 
important information contained in the original data 
is retained by PCA (Yi et al. 2007). Therefore, PCA 
has been widely used to perform multi-spectral data 
in the field of remote sensing, and it is also suitable 
to analyse fluorescence spectra in this study.
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In order to analyse the performance of PCs as 
variables, the BPNN model was utilized to estimate 
LNC. Each processing unit of BPNN calculates 
weighted inputs and then applies a linear or non-
linear function to the resulting sum to determine 
the output (Zong et al. 2014). In addition, it also 
exhibits the advantage of the input signals stimu-
lating network capability to patterns recognition 
(Samborska et al. 2014, Yang et al. 2015b). All 
fluorescence spectra were consisted of 216 sets 
of data (108 sets for each growth stage), which 
were randomly divided into two sections: 70% as 
the training set for training BPNN model and the 
other 30% as the validation set to test the tentative 
performance of BPNN.

RESULTS AND DISCUSSION

LIF spectra. The LIF spectra are normalized to 
1 at 460 nm and chlorophyll fluorescence wave-
length ranges from 650 nm and 800 nm, centring 
at 685 nm and 740 nm (Figure 1). According to 
previous investigations (Chappelle et al. 1991), 
the fluorescence peak at 685 nm is attributed to 
chlorophyll a associated with photosystem II, the 
other fluorescence peak at 740 nm is correspond-
ing to antenna chlorophyll of both photosystem I 
and photosystem II. Figure 1 illustrates that the 
fluorescence intensity at 740 nm is more intensive 
than that at 685 nm (Apostol et al. 2007). The reason 
is that the fluorescence emitted between 684 nm 
and 695 nm was more strongly reabsorbed by the 

chlorophyll pigment in the upper layer leaf cells. 
Thus, chlorophyll pigment displayed little influ-
ence to fluorescence peak at 740 nm (Malenovsky 
et al. 2009). From Figure 1, it can be known that 
the fluorescence spectra between 650~800 nm 
increased with the increase of paddy rice LNC. 
Thus, the LIF technology can be used to monitor 
the LNC of paddy rice in this study. As shown in 
Figure 1, the fluorescence spectra exhibited similar 
changing tendency with the studies of Živčák et 
al. (2014b).

Analysis of PCA. In this study, PCA was utilized 
to reduce the dimensionality of the fluorescence 
spectra and extract the characteristics vectors by 
analysing internal correlation of data. All 216 sets 
of the fluorescence spectra with different paddy rice 
LNC were analysed by using PCA. The explained 
variance (EV) and cumulative variance (CV) of the 
first three eigenvalues of the fluorescence spectra 
for the different growth stages of paddy rice were 
listed in Table 1.

From the Table 1, it can be known that 95.76% 
and 93.53% of the total variance can be explained 
by using the accumulated weight value of the first 
three major factors for the tillering stage and shoot-
ing stage, respectively. Thus, all fluorescence char-
acteristics can be represented by using the first 
three PCs. In order to better comprehend the 
efficiency of PCA for describing the fluorescence 
spectra, the loading plots of the first three PCs 
were displayed in Figure 2.

Figure 2 is the weight of the PCA of fluorescence 
spectra under different LNCs. It can be known 
that the PC1 and PC2 are mainly attributed to the 
fluorescence spectra at 545, 687, 740 and 743 nm. 
Thus, it further demonstrates that the first three 
PCs include a large number of information con-
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Figure 1. The relationship between the normalized 
fluorescence intensity (normalized to 1 at 460 nm) and 
the wavelength under different paddy rice leaf nitrogen 
content (mg/g)

Table 1. Percentage of the explained variance for the 
first three principal components (PCs) for different 
growth stages of paddy rice. PC1, PC2 and PC3 capture 
the abundant information contained in the LIF spectra

Tillering stage Shooting stage

EV (%) CV (%) EV (%) CV (%)

PC1 81.49 81.49 85.59 85.59

PC2 11.35 92.84 5.96 91.55

PC3 2.92 95.76 1.98 93.53

EV – explained variance; CV – cumulative variance
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tained in the fluorescence spectra, which can be 
utilized to further analyse the paddy rice LNC.

Estimation of LNC. The first three PCs were set 
as input variables, a three-layer BPNN model was 
used to estimate the paddy rice LNC. This network 
architecture consisted of three parts: one input 
layer, one hidden layer and one output layer (Yi et 
al. 2007). The fluorescence spectra of each growth 
stage (tillering stage and shooting stage), the 76 
sets out of 108 sets were utilized to train BPNN 
model. The remaining 34 sets were employed to 
test the performance of the model. The results of 
inversion LNC were displayed in Figure 3.

Figure 3 exhibited the relationship between the 
predicted and observed LNCs for the different 
growth stages of paddy rice. The solid line denotes 

the linear regression for the predicted and observed 
values. The R2 of the linear regression analysis 
between the predicted and measured values can 
be up to 0.952 and 0.931 for tillering stage and 
shooting stage, respectively. The predicted results 
were nearly in accordance with the line of 1:1, 
which means the PCA combined with BPNN can 
be utilized to analyse the correlation between the 
fluorescence spectra and LNC.

Analysis of accuracy and precision. In order 
to quantitatively evaluate the accuracy of the pre-
dicted results, the residual is utilized in this study. 
Residuals of the predicted values represented the 
differences between the predicted and observed 
values. Figure 4 showed the residual of predictive 
LNC and it mainly ranged from –0.2 to 0.2 mg/g. 
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Figure 3. The relationship between the observed and predicted leaf nitrogen content (LNC) based on the first three 
principal components for different growth stages: (a) tillering stage; (b) shooting stage. The dot line is the 1:1 line
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Therefore, the experimental results (Figures 3 
and 4) demonstrated that the LIF technology with 
the help of PCA and BPNN can be employed to 
precisely inverse paddy rice LNC.

In conclusion, the fluorescence spectra of paddy 
rice increased with the increase of LNC, which can 
be utilized to monitor the change of paddy rice 
LNC. Thus, PCA, which was utilized to extract the 
characteristic variables by analysing the major at-
tributes, combined with BPNN was used to inverse 
LNC based on LIF technology. The R2 of the linear 
regression between the predicted and measured 
values of the tillering stage and shooting stage are 
0.952 and 0.931, respectively. All residuals mainly 
range from –0.2 to 0.2 mg/g. The experimental 
results demonstrated that LIF technology with the 
help of multivariate analysis is a potentially useful 
method for monitoring N content of paddy rice. If 
more fluorescence spectra with different growth 
environments and cultivars were obtained, it will 
improve the universality of the model. Then, it can 
provide support for the N fertilization strategies 
and reduce the environmental pollution caused 
by over-fertilization.
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