

Content of polyphenols and carotenoids in edible potato tubers with coloured flesh

KRYSTYNA ZARZECKA*, KATARZYNA RYMUZA

Institute of Agriculture and Horticulture, University of Siedlce, Siedlce, Poland

*Corresponding author: krystyna.zarzecka@uws.edu.pl

Citation: Zarzecka K., Rymuza K. (2025): Content of polyphenols and carotenoids in edible potato tubers with coloured flesh. *Plant Soil Environ.*, 71: 381–386.

Abstract: Polyphenols and carotenoids are important bioactive compounds in potato tuber. Knowledge of these features makes it possible to select cultivars for cultivation, consumption, and processing with desirable properties. For this purpose, the content of polyphenols and carotenoids in edible potato tubers from different countries was analysed. The research material consisted of eight cultivars, including one light yellow – Eurostar, two with red flesh – Rote Emmalie and Herbie 26 and five cultivars with purple flesh – Provita, Salad Blue, Blue Annelise, Vitelotte Noire and Bora Valley. They were cultivated in a three-year, single-factor field experiment. The content of polyphenols in the analysed cultivars ranged from 165.0 to 283.8 mg/kg of fresh weight and depended on the cultivar, year of research and cultivar-year interactions. The highest average amounts of these compounds were noted in the Herbie 26, Rote Emmalie and Vitelotte Noire cultivars. The content of carotenoids ranged from 1.122 to 3.173 mg/kg of fresh weight and depended significantly on the cultivar, weather conditions in the years of the study and the interaction of cultivars with years. The highest amounts of carotenoids were determined in the purple-fleshed cultivars Blaue Annelise and Vitelotte Noire and the red-fleshed cultivar Rote Emmalie.

Keywords: *Solanum tuberosum* L.; nutrition; red and purple tuber flesh; bioactive substances

Health-promoting components in raw materials and plant-based products are increasingly recognised and appreciated by producers, dieticians, and consumers alike. This stems, among other things, from lifestyle and societal affluence changes, growing awareness, and shifting dietary patterns. Modern consumers are showing greater concern for their health, are interested in preventing diet-related diseases, and expect food to be produced from raw materials with enhanced nutritional value and rich in phytochemicals such as polyphenols, carotenoids, vitamins, polyunsaturated fatty acids, proteins, or mineral compounds (Thakur et al. 2020, D'Amelia et al. 2022). Of importance is the fact that plant-based bioactive compounds are safe for use in food, are characterised by multiple health-promoting effects, and can potentially be used as natural substances which strengthen the body and enrich the diet (Berindean et al. 2022). Among

the plants that are a good source of valuable bioactive compounds is the potato, whose various flesh colours range from creamy and yellow to red, purple, and dark purple (Rytel et al. 2019, Zarzecka et al. 2022). The phenolic compounds found in potato tubers are secondary plant metabolites divided into two main groups: phenolic acids and flavonoids. Of all phenolic acids, chlorogenic acid is predominant, accounting for 90% of the phenolic compounds in potato tuber skins (Ezekiel et al. 2013, Hamouz et al. 2013). Potato polyphenols are natural antioxidants – they help protect the body from the harmful effects of free radicals and prevent cardiovascular diseases and neoplasms (Rasheed et al. 2022). Studies have shown that polyphenol content is primarily determined by the potato cultivar as well as environmental and agronomic factors and their interaction with the genotype (Orsák et al. 2019, Berindean et al. 2022, D'Amelia et al. 2022, Rasheed et al. 2022).

Supported by the Ministry of Education and Science of Poland, Project No. 162/23/B.

© The authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).

Table 1. Characteristics of the potato cultivars examined in this study

Cultivar	Flesh colour	Skin colour	Yield of tubers	Country of origin
Eurostar	light yellow	light yellow	large	Netherlands
Rote Emmalie	red	red	large	Germany
Herbie 26	red	red	medium	Czech Republic
Provita	purple	purple	medium	Poland
Salad Blue	purple	dark blue	medium	United Kingdom
Blue Annelise	purple	dark purple	medium	Germany
Vitelotte Noire	purple	purple	medium	Peru-France
Bora Valley	dark purple	dark purple	very large	Korea

Carotenoids are an important group of natural organic pigments synthesised in plants. They can be divided into orange carotenes and yellow xanthophylls, with lutein being the dominant representative of the latter group (Lachman et al. 2016, Trawczyński et al. 2019). They exhibit antioxidant and anti-inflammatory properties and contribute to skin health and good vision, as they protect the eyes from macular degeneration and cataracts (Saini et al. 2015, Lal et al. 2021). Hamouz et al. (2016) and Mystkowska et al. (2023) reported that the total carotenoid content in potato tubers depends on the cultivar, location, weather conditions, and agronomic practices. The aim of the study was to evaluate the content of polyphenols and carotenoids in potato tubers with coloured flesh under different weather conditions.

MATERIAL AND METHODS

Potato tubers for chemical analysis came from a three-year, single-factor field experiment conducted in 2021–2023. They were established using the random block method in three replications on a medium soil with a granulometric composition of sandy loam, acidic to slightly acidic and medium to high abundance in available P, K, and Mg forms. Eight edible potato

cultivars were grown and evaluated in the experiment – a control cultivar with light yellow flesh Eurostar, two cultivars with red flesh and five cultivars with purple flesh. The characteristics of the cultivars are shown in Table 1. Fertilisation and control of diseases and pests in accordance with the requirements of agricultural practice are presented in Table 2.

Every year, potatoes are grown after winter triticale. The size of a single plot was 12.96 m² (4.8 × 2.70 m). Potato tubers were planted by hand in the third decade of April at a spacing of 67.5 × 40 cm and harvested in the second and third decade of September, at the stage of full physiological maturity.

Polyphenols and carotenoids content was determined in fresh potato tubers 3–5 days after harvest. The polyphenols were determined by a spectrophotometer (Spectroblue, AMETEK Inc., Jena, Germany) with Folin-Ciocâlteu reagent. These compounds were determined using the method proposed by Mystkowska et al. (2020). Total carotenoid analysis was performed in accordance with the Polish Standard PN-90/A-75101/12 (1990). The detailed procedure for determining these compounds was carried out using the method proposed by Mystkowska et al. (2023).

The results obtained from the conducted chemical analyses were statistically processed using the analysis of variance. The significance of differences (*HSD* –

Table 2. Fertilisation and preparations of plant protection applied in the experiment

Treatment	Fertilisers and plant protection products
Fertilisers	manure – 25 t/ha, 100 kg N/ha, 44.0 kg P/ha, 124.5 kg K/ha
Weed control	herbicide – Bandur 600 SC (aconitifene) 0.3 L/ha
Colorado potato beetle control	insecticides: Decis Mega 50 EW (deltamethrin) 0.1 L/ha, Coragen 200 SC (chlorantraniliprole) 0.05 L/ha, Mospilan 20 SP (acetamiprid) 0.1 kg/ha
Late blight control	fungicides: Infinito 687.5 SC (propamocarb and fluopicolide) 1.5 L/ha, Cabrio Duo 112 EC (dimetomorph and pyraclostrobin) 2.5 L/ha, Carial Star 500 SC (mandiopropamide and difenoconazole) 0.6 L/ha

Table 3. Meteorological conditions in 2021–2023, according to Zawady Meteorological Station (Poland)

Year	Rainfalls sum (mm)	In comparison to multi-year	Air temperature (°C)	In comparison to multi-year
2021	292.8	–15.1	15.4	+1.0
2022	289.0	–18.9	14.8	+0.8
2023	185.5	–122.4	16.6	+2.2
1980–2009	307.9		14.4	–

honestly significant difference) between the objects was verified using the Tukey's test at a significance level of $P \leq 0.05$ (Trętowski and Wójcik 1991).

The study presents meteorological conditions and hydrothermal coefficient from an experimental station located in the study area at a distance of about 200 m from the experiment. The years 2021 and 2022 were relatively dry, with rainfall deficits in these seasons of 15.1 mm and 18.9 mm, respectively, compared to the multi-year period (Tables 3 and 4). The year 2023 was very dry. All months, with the exception of May, were characterised by low rainfall, extremely dry, very dry and dry. Rainfalls during the growing season were 122.4 mm less, and air temperature was 2.2 °C higher than in the multi-year period.

RESULTS AND DISCUSSION

The polyphenol content determined in the fresh weight of tubers varied according to the cultivar and study year, ranging from 165.0 to 283.8 mg/kg (Table 5, Figure 1A). These values align with the findings of other authors (Hamouz et al. 2013, Zarzecka et al. 2019, Mystkowska et al. 2020, D'Amelia et al. 2022, Cebulak et al. 2023). The genetic properties of the test cultivars significantly influenced the analysed trait. The highest average polyphenol amounts (calculated

across three study years) were recorded for cv. Herbie 26, Rote Emmalie, and Vitelotte Noire, with no significant differences between these cultivars (Figure 1A). The lowest average polyphenol amounts were found in cv. Provita (purple) and cv. Eurostar (light yellow).

The high concentration of this component in cvs. Herbie 26, Rote Emmalie, and Vitelotte was found in studies by Hamouz et al. (2013), and in cv. Herbie 26 in the research by Rytel et al. (2019). Of the eight cultivars with different flesh colours which they tested, Cebulak et al. (2023) recorded the highest polyphenol content in cv. Vitelotte, while Nemš et al. (2015) reported the same finding for cv. Blaue Annelise. Weather conditions during the study years proved to be a factor affecting polyphenol content in tubers, the factor being no less significant than the cultivar itself (Tables 4 and 5). The year 2022, which was relatively dry with alternating dry, very dry, and relatively dry months, was the most favourable for the concentration of this component. The influence of climatic conditions on polyphenol content was confirmed in studies by Hamouz et al. (2013), Escuredo et al. (2018), and Mystkowska et al. (2020). Variance analysis revealed a significant interaction between cultivars and study years, indicating varied responses to meteorological conditions. The highest polyphenol accumulation was observed in cv. Bora Valley (purple) and cv. Herbie

Table 4. Hydrothermal Sielianinov index (K) in the years of study

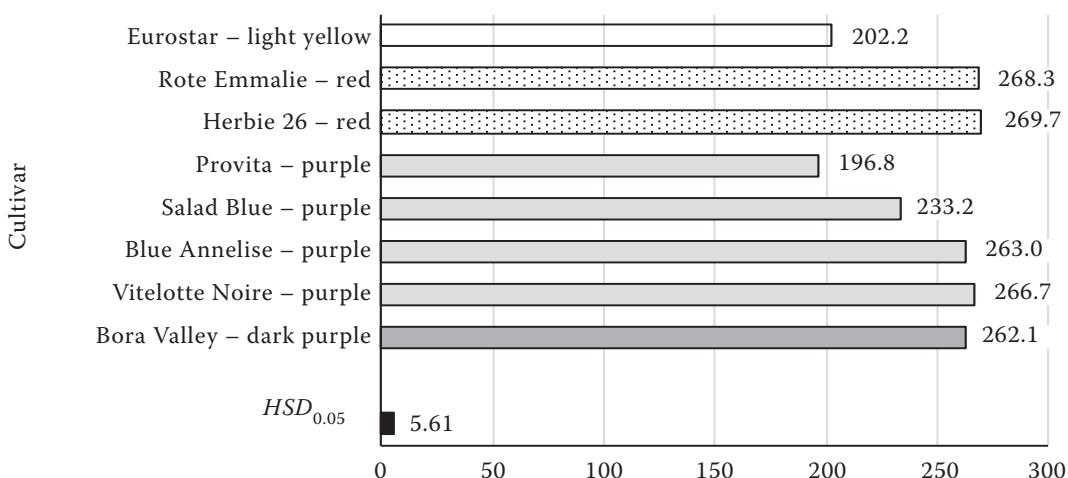
Year	Month						Mean IV–IX
	April	May	June	July	August	September	
2021	2.13 humid	0.79 dry	0.55 very dry	0.73 dry	1.86 relatively humid	1.09 relatively dry	1.19 relatively dry
	1.51 optimal	0.76 dry	0.44 very dry	1.66 relatively humid	0.62 very dry	1.84 relatively humid	1.14 relatively dry
2023	0.48 very dry	1.16 relatively dry	0.99 dry	0.52 very dry	0.39 extremely dry	0.31 extremely dry	0.64 very dry

Skowera et al. (2014) classified index (K) values as: $K \leq 0.4$ – extremely dry; $0.4 < K \leq 0.7$ – very dry; $0.7 < K \leq 1.0$ – dry; $1.0 < K \leq 1.3$ – relatively dry; $1.3 < K \leq 1.6$ – optimal; $1.6 < K \leq 2.0$ – relatively humid; $2.0 < K \leq 2.5$ – humid; $2.5 < K \leq 3.0$ – very humid, $K > 3.0$ extremely humid

Table 5. Content of total polyphenols in cultivar potato tubers (mg/kg fresh matter)

Cultivar	2021	2022	2023
Eurostar	256.4	180.3	169.9
Rote Emmalie	240.4	282.3	282.2
Herbie 26	252.4	283.4	273.4
Provita	240.9	184.5	165.0
Salad Blue	235.0	277.2	187.4
Blue Annelise	244.7	282.2	262.1
Vitelotte Noire	247.5	281.4	271.1
Bora Valley	249.2	283.8	253.4
Mean	245.8	256.9	233.1
<i>HSD</i> _{0.05} for: years – 5.6; interaction cultivars × years – 15.8			

HSD – honestly significant difference


Table 6. Content of total carotenoids in cultivar potato tubers (mg/kg fresh matter)

Cultivar	2021	2022	2023
Eurostar	2.513	1.368	1.370
Rote Emmalie	2.803	2.167	3.163
Herbie 26	2.820	2.347	2.167
Provita	2.727	1.122	1.843
Salad Blue	2.807	2.203	2.840
Blue Annelise	2.823	2.282	3.173
Vitelotte Noire	2.927	2.273	3.073
Bora Valley	2.973	2.423	2.320
Mean	2.800	2.020	2.490
<i>HSD</i> _{0.05} for: years – 0.046; interaction cultivars × years – 0.130			

HSD – honestly significant difference

(A)

Mean for 2021–2023

(B)

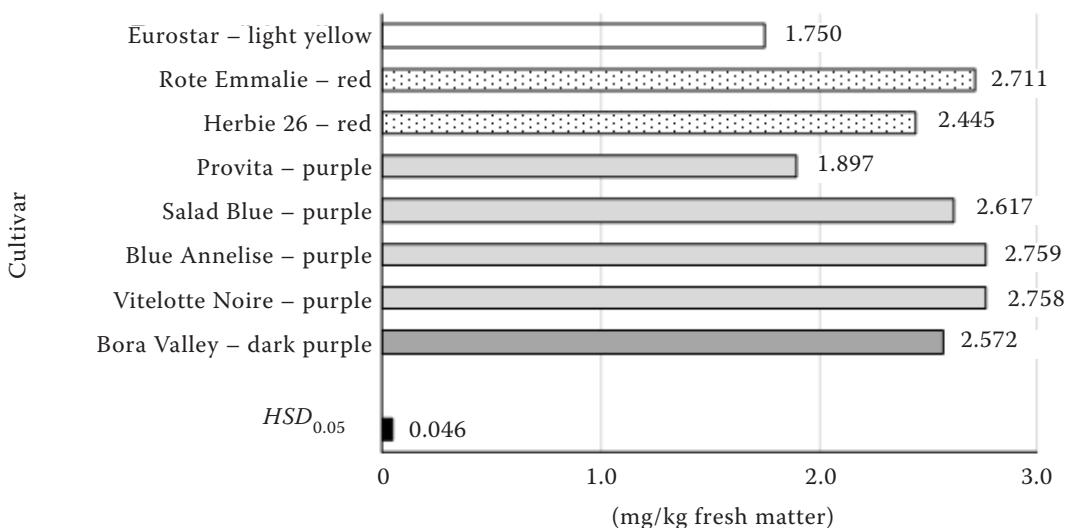


Figure 1. (A) Total polyphenols and (B) total carotenoid content in potato tubers; *HSD* – honestly significant difference

<https://doi.org/10.17221/109/2025-PSE>

26 (red) in 2022, while the lowest was determined in cv. Provita (purple) and cv. Eurostar (light yellow) in the dry year 2023. In 2023 (dry), among groups of cultivars with coloured flesh, a tendency toward higher polyphenol accumulation was observed in red-fleshed cultivars. In contrast, Orsák et al. (2019) observed this trend in cultivars with purple flesh. The interaction between cultivars and study years was also noted by other researchers (Hamouz et al. 2013, Orsák et al. 2019, Mystkowska et al. 2020).

The carotenoid content in potato tubers ranged from 1.122 to 3.173 mg/kg of fresh weight and was significantly influenced by the cultivar, weather conditions during the study years, and the interaction between cultivars and years (Table 6, Figure 1B).

The highest average values of this component were recorded in the purple-fleshed cv. Blaue Annelise and cv. Vitelotte Noire, as well as in the red-fleshed cv. Rote Emmalie, amounting to 2.759, 2.758, and 2.711 mg/kg, respectively (Figure 2). The lowest carotenoid levels were found in cv. Eurostar (light yellow) and cv. Provita (purple). The influence of cultivar on this trait in potatoes with different flesh colours was noted by other authors who reported that white-fleshed potato cultivars contained lower amounts of carotenoids compared to coloured ones (Hamouz et al. 2016, Lachman et al. 2016, Cima et al. 2020, Samaniego et al. 2020, Lal et al. 2021). Weather conditions during the potato growing season significantly affected the discussed trait. The highest carotenoid content – 2.800 mg/kg – was recorded in 2021, when May, June, July, and September were dry, very dry, and relatively dry, while the lowest average content – 2.020 mg/kg – was observed in 2022. The impact of hydrothermal conditions on carotenoid accumulation was demonstrated in studies by other authors (Hamouz et al. 2016, Escuredo et al. 2018, Mystkowska et al. 2023). Statistical calculations confirmed varying responses of the test cultivars to climatic conditions. The highest carotenoid accumulation was observed in cv. Bora Valley in 2021 and 2022, which were relatively dry and in cv. Blue Annelise in a very dry 2023. In contrast, the lowest amounts of these compounds across all the study years were recorded in cvs. Eurostar and Provita. The significant interaction between cultivars and study years was confirmed in research by Escuredo et al. (2018) and Mystkowska et al. (2023). Hamouz et al. (2016) and Samaniego et al. (2020) demonstrated varied responses of cultivars to both diverse weather conditions and different cultivation locations.

REFERENCES

Berindean I.V., Ona A.D., Munteanu C., Racz I., Pop B., Costin A.D. (2022): Potato as a complex plant with medical benefits. Hop and Medicinal Plants, 1–2: 11–27.

Cebulak T., Krochmal-Marczak B., Stryjecka M., Krzysztofik B., Sawicka B., Danilcenko H., Jarienè E. (2023): Phenolic acid content and antioxidant properties of edible potato (*Solanum tuberosum* L.) with various tuber flesh colours. Foods, 12: 100.

Cima F.F., Pereira E.S., Schiavon M.V., Munhoz P.C., Lenz E.A., Wolter D.D., Silva T.A., Azevedo F.Q., Vizzotto M., Pereira A.S. (2020): Bioactive compounds, processing quality and yield of colored flesh potato clones. Horticultura Brasileira, 38: 139–145.

D'Amelia V., Sarais G., Fais G., Dessì D., Giannini V., Garramone R., Carpoto D., Melito S. (2022): Biochemical characterization and effects of cooking methods on main phytochemicals of red and purple potato tubers, a natural functional food. Foods, 11: 384.

Escuredo O., Seijo-Rodríguez A., Rodríguez-Flores M.S., Míguez M., Seijo M.C. (2018): Influence of weather conditions on the physicochemical characteristics of potato tubers. Plant, Soil and Environment, 64: 317–323.

Ezekiel R., Singh N., Sharma S., Kaur A. (2013): Beneficial phytochemicals in potato – a review. Food Research International, 50: 487–496.

Hamouz K., Lachman J., Pazderù K., Hejtmánková K., Cimr J., Musilová J., Pivec V., Orsák M., Svobodová A. (2013): Effect of cultivar, location and method of cultivation on the content of chlorogenic acid in potatoes with different flesh colour. Plant, Soil and Environment, 59: 465–471.

Hamouz K., Pazderù K., Lachman J., Čepel J., Kotíková Z. (2016): Effect of cultivar, flesh colour, locality and year on carotenoid content in potato tubers. Plant, Soil and Environment, 62: 86–91.

Lachman J., Hamouz K., Orsák M., Kotíková Z. (2016): Carotenoids in potatoes – a short overview. Plant, Soil and Environment, 62: 474–481.

Lal M.K., Luthra S.K., Paul V., Singh M.P., Raigond P., Singh B., Pandey R. (2021): Purple potato and its health benefits. Indian Food Industry Magazine, 3: 21–29.

Mystkowska I., Zarzecka K., Gugała M., Sikorska A. (2020): The polyphenol content in three edible potato cultivars depending on the biostimulants used. Agriculture, 10: 269.

Mystkowska I., Zarzecka K., Gugała M., Ginter A. (2023): Changes in the content of carotenoids in edible potato cultivated with the application of biostimulants and herbicide. Journal of Plant Protection Research, 63: 263–270.

Nemš E., Miedzianka J., Pęksa A., Kita A. (2015): Prohealthy compounds content in potato varieties of different flesh colour. Bromatologia i Chemia Toksykologiczna, XLVIII: 473–478. (In Polish)

Orsák M., Hamouz K., Lachman J., Kasal P. (2019): Chlorogenic acid content in potato tubers with colored flesh as affected by

genotype, location and long-term storage. *Plant, Soil and Environment*, 65: 355–360.

Rasheed H., Ahmad D., Bao J. (2022): Genetic diversity and health properties of polyphenols in potato. *Antioxidants (Basel)*, 11: 603.

Rytel E., Nemś A., Pęksa A., Kita A., Miedzianka J., Tajner-Czopek A., Kucharska A.Z., Sokół-Łeżtowska A., Hamouz K. (2019): Discolouration of raw and cooked coloured fleshed potatoes differing in anthocyanins and polyphenols content. *International Journal of Food Science and Technology*, 54: 92–101.

Saini R.K., Nile S.H., Park S.W. (2015): Carotenoids from fruits and vegetables: chemistry, analysis, occurrence, bioavailability and biological activities. *Food Research International*, 76: 735–750.

Samaniego I., Espin S., Cuesta X., Arias V., Rubio A., Llerena W., Angós I., Carrillo W. (2020): Analysis of environmental conditions effect in the phytochemical composition of potato (*Solanum tuberosum*) cultivars. *Plants*, 9: 815.

Skowera B., Jędrzczak E.S., Kopcińska J., Ambroszczyk A.M., Kołton A. (2014): The effects of hydrothermal conditions during vegetation period on fruit quality of processing tomatoes. *Polish Journal of Environment Studies*, 23: 195–202.

Thakur N., Raigond P., Singh Y., Mishra T., Singh B., Lal M.K., Dutt S. (2020): Recent updates on bioaccessibility of phytonutrients. *Trends in Food Science and Technology*, 97: 366–380.

Trawczyński C., Hallmann E., Wierzbicka A. (2019): Effect of production system and potato varieties on the content of selected antioxidant compounds in tubers. *Fragmenta Agronomica*, 36: 78–87.

Trętowski J., Wójcik R. (1991): Methodology of Agricultural Experiments. Siedlce, Wyższa Szkoła Rolniczo-Pedagogiczna, 500. (In Polish)

Zarzecka K., Gugała M., Sikorska A., Mystkowska I., Baranowska A., Niewęgłowski M., Dołęga H. (2019): The effect of herbicides and biostimulants on polyphenol content of potato (*Solanum tuberosum* L.) tubers and leaves. *Journal of the Saudi Society of Agricultural Sciences*, 18: 102–106.

Zarzecka K., Ginter A., Gugała M., Mystkowska I. (2022): Color potato – grown yesterday, today, tomorrow. *Herbalism*, 1: 130–139. (In Polish)

Received: March 13, 2025

Accepted: May 28, 2025

Published online: June 5, 2025