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Abstract: Agriculture and energy are intricately connected, with agriculture being a significant energy consumer and
supplier. In this comprehensive study, SPSS and Jupyter Notebook were used to model and predict the energy require-
ments of potato plants during cultivation. A system using deep learning methods, specifically the Convolutional Neural
Network (CNN), was also developed to accurately predict the classification of potato plant growth phases using image
data. The CNN model, developed with 100 epochs and 5 layers, used 1 125 image data of potato plants, categorising
them into two classes: the vegetative phase, with an energy requirement of 4 195.80 MJ-ha"}, and the generative phase,
with an energy requirement of 746.45 MJ-ha~!. The model's accuracy in reflecting the actual data, with a mean absolute
error of 0.11, mean square error of 0.01, and root mean square of 0.13, indicates no significant issues. The test predicted
categorization with 99% precision, underscoring the thoroughness and validity of this study and reassuring the audience
about the accuracy of the results. The study findings not only validate the use of deep learning in agriculture but also
inspire the development of applications to predict the energy demand for each growth phase using plant image data.
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The agricultural sector, a vital part of the Indo-
nesian economy, is facing a pressing issue of rising
energy demand due to mechanised crop produc-
tion practices, growing populations, and limited
arable land area. The need to optimise instruments
and technology to meet the expanding population’s
dietary requirements is urgent. Forecasting energy
needs can lead to immediate action in production
process optimisation and reduce wastage like po-

tato crops. In annuals and short-lived dicotyledons,
potato plants have four growth phases: vegetative,
initiation, expansion, and maturation.

Agriculture and energy have a close relation-
ship, with the agricultural sector being one of the
most significant consumers and suppliers of bioen-
ergy. With mechanised crop production practises,
increasing populations, increasing high-yielding
varieties, and limited arable land area, but rising
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requirements and living standards, the agricultural
sector's energy demand is rising rapidly (Gomez
et al. 2019). It is expected that the agricultural sec-
tor will advance rapidly to complete work more ef-
ficiently, quickly, and effectively with the advance-
ment of technology in the modern era, such as the
development of software that can mimic human in-
telligence and mechanisation technology that can
make work more concise.

Deep learning techniques have been used to fore-
cast crop output and growth, and artificial neural
networks have been employed to estimate potato
yield based on energy inputs. The use of artificial
intelligence and mathematical models has been ex-
plored in the field of agriculture to anticipate energy
consumption (Pishgar-Komleh et al. 2012; Muazu
et al. 2014; Bogner et al. 2019; Gomez et al. 2019;
Mosavi and Bahmani, 2019; Bolandnazar et al. 2020;
Mehta et al. 2023; Sigalingging et al. 2023). Several
deep-learning studies have predicted potato output
and identified diseases. PLDPNet, a hybrid deep
learning network, can automatically segment and
classify potato leaf diseases (Arshad et al. 2023).
Energy inputs have been utilised to estimate potato
output in Saudi Arabia using artificial neural net-
works (Al-Hamed and Wahby 2016). Another re-
search suggests deep learning for field-based potato
blight diagnosis (Johnson et al. 2021; Al-Adhaileh
et al. 2023). PotatoPestNet uses a neural network
to identify potato pests automatically (Talukder
et al. 2023). Nevertheless, the existing literature
on using deep learning techniques for about model-
ling potato energy demand forecast in the context
of potatoes is limited.

For fruit analysis, Convolutional neural net-
works (CNNs) and advanced detection models like
R-CNN and YOLO have been tested for precision,
recall, and F1 scores (Espinoza et al. 2024). This
field has data shortages, labelling issues, and fruit
variety (Espinoza et al., 2024; Khalid 2024). How-
ever, optimizing deep-learning approaches has
significantly improved fruit categorisation accu-
racy, marking significant progress in the field (Gill
et al. 2023). Fruit recognition and localisation us-
ing semantic segmentation and deep learning seem
promising (Maheswari et al. 2021).

Mechanisation and artificial intelligence soft-
ware are two examples of technological progress
improving agriculture productivity and efficiency.
Artificial intelligence (AI) may be used throughout
the agricultural process, from fertilisation through
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harvesting and beyond. Deep learning is a branch
of Al that employs the concept of deep artificial
neural networks to improve data precision. CNNs
are frequently employed for image learning (Albel-
wi and Mahmood 2017).

Achieving a balance between model training
performance and efficiency is crucial in the field
of neural network training. This balance is influ-
enced by the dataset size, which varies depend-
ing on task difficulty and model design. For in-
stance, Modified National Institute of Standards
and Technology (MNIST) digit identification can
use 1 489 photos (2.5% of the dataset) (Aki et al.
2017), while complex tasks usually demand larg-
er datasets. Thian et al. (2022) found that medi-
cal picture classification performance improved
with dataset sizes of 20 000-291 000 images. The
pioneering ImageNet classification model by Kriz-
hevsky et al. (2012) used 1.2 million photos. The
link between dataset size and model performance
frequently follows a learning curve with declining
returns (Szyc 2020; Thian et al. 2022). CNNs and
hybrid models combining CNNs with artificial neu-
ral networks, have been employed to achieve high
accuracy in classifying potato diseases with dataset
sizes range from 1 574 to 34 657 images (Biswas
and Barma 2021; Hasan et al. 2021).

The output of individual convolutional lay-
ers may help explain how a picture transforms
as it traverses a deep CNN. The feature or activa-
tion maps may be graphically connected to the
input picture. Each convolutional layer filters the
picture using a set of functions. The feature helps
relate the learned filter to model performance and
increase performance (Kuo 2016). Lee et al. (2017)
found that the hierarchical change of characteris-
tics from lower-level to higher-level abstraction for
species classes is better represented by plants' dis-
tinct orders of venation than the leaf outline shape.
Forecasting, which estimates future values using
past data, can be used to interpret predictions. The
objective of this study is to develop a modelling sys-
tem that utilises deep learning techniques to fore-
cast the energy requirements of potato plants based
on growth phase.

MATERIAL AND METHODS

Data collection and processing. Data was col-
lected on a significant scale, by recording all the
necessary data requirements according to the vari-
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ables determined from planting to harvest in Food
Estate Hutajulu, Humbang Hasundutan, North Su-
matra, Indonesia. This comprehensive approach
provides a deep understanding of the subject. Next,
the collected data was converted into energy units
(MJ-ha™!) using the energy coefficient as shown
in Table 1. In addition to acquiring energy de-
mand data, image data was also collected on potato
plants. There were 1 125 images of potato plants
in the obtained image data.

Modelling design. The design of energy demand
modelling was made by Cobb-Douglas modelling
in (1) to produce energy productivity values. From
Equation (1), the simplified expression in Equation
(3) can be used to predict the value of energy produc-
tivity. The process of designing this equation is assist-
ed by IMD SPSS (Pishgar-Komleh et al. 2012; Arshad
et al. 2023). The Cobb-Douglas function model is:

Y = f(x) exp(u) (1)

where: u — an unidentified parameter that requires esti-
mation from data as a latent variable that modifies the
model's predictions.

The equation model is transformed into a linear
equation using the natural logarithm (In) (Beigi
et al. 2016):

InYi=oc0+Z:i:l)ajln(Xil.)+el.;i=1,2,3...,n 2)

The variable Y;represents the yield of the i pota-
to, X;; represents the vector of inputs utilised in the
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production process, o, is a constant, o; represents
coefficients of inputs, and ¢; is the error term. Equa-
tion (2) can be reformulated for potato production
with the eight inputs, assuming that yield depends
on energy inputs as shown in Equation (3)

InY,=o0,+0,InX, +o,InX, +o,In X, + 3)
+o,InX,0,In X, +e

where: X;, X,, X;, X,, and X, — fertilisation, pesticide,
irrigation, electrical, and human energy, respectively.

The modeling design for energy demand, carried out
using Python and Jupiter Notebook, determined the
intercept value and coeflicient value of each variable.
This equation, in the form of multiple linear regres-
sions, is crucial part of our work. ANOVA, a reli-
able independent statistical method for input-output
significance, checks for significant output differ-
ences using the F ratio or P value (Amor et al. 2022),
instilling confidence in our statistical analysis.

CNN design for image classification according
to growth phases. This design was carried out with
the Convolutional Neural Network (CNN) method
using Python through Jupyter Notebook (Figures 1
and 2), with the following stages:

Dataset collection. At this stage, image data col-
lection was carried out, which is used for research
every day by taking pictures of potato plants with
the help of cameras in each growth phase: vegeta-
tive and generative phases. From the dataset col-
lection, 1 125 images were generated for the entire
image data. Image data began to be taken on potato

Table 1. The energy coefficient of labour, machinery, fuel, fertiliser, pesticide, irrigation, and potato seed

Particulars Energy coefficient (MJ-unit™?) Unit References
Input
Labour women Lo7 person Yaldiz et al. (1993)
man 1.96 person

Diesel 56.31 L Khoshnevisan et al. (2013)
Machinary 64.8

. nitrogen (N) 66.14 ke Bolandnazar et al. (2014)
Fertiliser potasium (K,O) 11.15 kg

phospat 12.44 kg

Manuer 0.3 kg Muazu et al. (2014)
Pesticiede 120 kg Mohammadi et al. (2008)
Seeds 3.6 kg Ozkan et al. (2004)
Irrigation 1.02 m® Bolandnazar et al. (2014)
Output
Potato tuber 3.6 kg Esengun et al. (2007)
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Figure 1. Flowchart of the potato energy demand on classification growth phase
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Figure 2. The architectural design of the proposed model

plants aged 20 days after planting (DAP), so po-
tato plant image data was taken for 70 days after
20 DAP.

Dataset preprocessing. At this stage, the image
data that had been collected were resized to the
same size. After resizing the image size, the next
stage is to convert the image into an array. The
next stage is to divide the image data into several
parts, namely testing data, training data and valida-
tion data. This preprocessing stage is vital because
the data to be processed must be in a format that
can be accepted by Convolutional Neural Network
(CNN).

Classification. Image classification was carried
out with the CNN method, with the CNN Convo-
lutional layer helping the neural network on CNN
to recognise images based on their attributes
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Convolution layer (16x3x3)
ReLU activation fuction

so that later, it can predict the phase of the potato
plant based on the image. In classification, there
are several stages, namely convolution, pooling and
fully connected layer (Figure 2).

Evaluation. The evaluation stage involves calcu-
lating the predictions' mean absolute error (MAE)
to determine the CNN model’s accuracy value.

RESULTS AND DISCUSSION

Mathematical modelling with SPSS. In this study,
the mathematical model was developed based on the
Cobb-Douglas model. This Cobb-Douglas model-
ling can estimate the relationship between input
energy (MJ-ha™!) and crop yield (kg-ha™), and then
energy productivity (kg-MJ™') can be determined
using Equation 4 during potato cultivation (Hatirli
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et al. 2006; Ghoshal and Goswami 2017; Sigaling-
ging et al. 2023). The value of energy productivity
is calculated by dividing the yield by the total energy
input (Mohammadi et al. 2008; McAndrew 2016).

Energy productivity= Yield
&P Inputenergy total (4)
Yield= Production )
Areas

The data reveals that a potato plant area of 0.13 ha
resulted in a harvest output of 323 kg. The data in-
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dicates that the yield value, calculated using Equati-
on (5) was 2 484.62 kg-ha™'. The total input energy
value is derived from the cumulative energy need
numbers obtained in Table 2. In order to determine
the coefficient values for each variable of model, the
subsequent procedure involves transforming the
secondary data presented in Table 3 into natural lo-
garithms (In) (Table 4). This conversion is necessary
to turn the data into multiple linear forms, which
can be incorporated into the modelling process.

In this study, there were two variables used,
namely the dependent variable (Y) and the inde-

Table 2. Energy productivity and total input energy during potato plant growth

Growth phase Period (week) Energy productivity (kg-MJ™1) Total input energy (MJ-ha™?)
1 2.171 1 144.601
2 8.705 285.418

Vegetative 3 8.705 285.418
4 2.343 1 060.614
5 1.750 1419.747
6 1.266 1 962.699
7 0.256 9 705.967
8 0.256 9714.868
9 0.317 7 831.926

Generative 10 1.519 1635.973
11 1.490 1 667.865
12 2.113 1175.704
13 1.434 1733.018
14 7.803 318.430

Table 3. Potato plant growth energy dataset

Growth phase  Period (week)

Fertiliser energy Pesticide energy Irrigation energy Electrical energy Labour energy

(MJ-ha™) (MJ-ha™) (MJ-ha ™) (MJ-ha™) (MJ-ha™)

1 201.90 708.92 203.87 4.26 25.65

2 0.00 0.00 285.42 0.00 0.00

Vegetative 3 0.00 0.00 285.42 0.00 0.00
4 72.51 679.38 285.42 8.32 14.98

5 157.11 945.23 285.42 12.04 19.95

6 19.34 1627.38 285.42 10.61 19.95

7 40.37 9341.54 285.42 14.33 24.30

8 75.41 9307.38 285.42 16.63 30.02

. 9 58.01 7441.85 285.42 16.63 30.02
Generative 10 20.30 1299.69 285.42 10.61 19.95
11 43.51 1299.69 285.42 14.33 24.91

12 31.14 827.08 285.42 12.04 20.03

13 13.74 1 403.08 285.42 10.61 20.18

14 0.00 304.62 0.00 4.26 9.56
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Table 4. Energy needed during potato plant growth using Equation 6 in natural logarithm

Growth phase Period (week) (M]l'rg;fl) (Ml]r-li\(;*l) (Mllr-lt)l(;*l) (Mllr.lﬁ(;l) (Ml]r.l})l(:fl) (Mlll?t)f;*l)
1 7.043 2.510 1.254 2.500 6.369 4.573
2 5.654 0.000 0.000 2.164 0.000 0.000
Vegetative 3 5.654 0.000 0.000 2.164 0.000 0.000
4 6.967 3.534 1.297 2.164 5.700 5.111
5 7.258 2.761 0.966 2.164 5.330 4.825
6 7.582 4.856 0.423 2.164 5.456 4.825
7 9.180 4.120 -1.324 2.164 5.155 4.627
8 9.181 3.495 -1.321 2.164 5.007 4.416
9 8.966 3.757 -1.097 2.164 5.007 4.416
Generative 10 7.400 4.807 0.648 2.164 5.456 4.825
11 7.419 4.045 0.648 2.164 5.155 4.603
12 7.070 4.379 1.100 2.164 5.330 4.821
13 7.458 5.198 0.571 2.164 5.456 4.813
14 5.763 0.000 2.099 0.000 6.369 5.561

InY - total input energy; InX, — fertiliser energy; InX, — pesticide energy; InX; — irrigation energy; InX, — electrical

energy; InX; — labour energy

pendent variable (X). The dependent variable is to-
tal energy demand (Y), while the independent vari-
ables are energy from fertilisation (X;), pesticides
(X,), irrigation (X;), electricity (X,), and labour (X;)
as displayed in Equations (6 and 7). Table 4 pro-
vides information on the labelling of various energy
components. Total energy demand is denoted as Y,
while fertiliser, pesticide, irrigation, electrical, and
human (labour) energy are denoted as X;, X,, X5, X,,,
and X, respectively. Then, it proceeds with analysis
of variance (ANOVA) regression testing using the
SPSS software (version 25) . The outcomes of the
tests that were conducted are presented in Table 5.

The ANOVA regression test produces a con-
stant value of 3.907 and the following coefficient
values for each variable: 0.055 for X, 1.081 for X,,
0.293 for X5, —0.448 for X, and —1.625 for X;. The
intercept (constant) value of 3.907 is statistically
significant as the P-value < 0.001. The coefficient
for X, (fertilisation energy) and X, (electricity en-
ergy) is not statistically significant (P-value > 0.05).
On the other hand, the coefficient for X, (pesticide
energy), X; (irrigation energy) and X; (labour ener-
gy) are statistically significant (P-value < 0.05). The
R-value of 0.98 indicates a strong association be-
tween predictors and dependent variables. The R?
value of 0.96 means the model has 96 % of the vari-
ation in the dependent variable, which is reassur-
ing. A high match is confirmed by the Adjusted R*
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Table 5. The coefficient of X variables for Equation 6 using
the ANOVA

Particulars Coeflicients SE P-value
Intercept o 3.907 0.536 0.000
InX, a, 0.055 0.128 0.678
InX, a, 1.081 0.156 0.000
InX, as 0.295 0.092 0.013
InX, a, -0.448 0.353 0.239
InX, as;  —1.625 0.440 0.006
R 0.98

R? 0.96

Adjusted R? 0.94

SE 0.30

SE — standard error; R — correlation coefficient; R* — coef-
ficient of determination; InX, — fertiliser energy; InX, —
pesticide energy; InX, — irrigation energy; InX, — electrical

energy; InX; — labour energy

score of 0.94, which accounts for the number
of predictors in the model.

An equation model was created using each of these
values to forecast the value of total energy demand
during potato plant growth (Equation 6). Equation
6 reveals that the Y value represents total energy
demand, and the constant coefficient value is 3.907.
This equation serves as a predictive model for to-
tal energy demand, which is presented in Figure 3.
These results indicate that there are still limitations
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Figure 3. Comparison of actual data and predicted results

as it lacks an error value, resulting in variations
in the obtained values. The disparity in results is evi-
dent from the graph depicted in Figure 3. To pro-
duce a more accurate prediction value, it is neces-
sary to find the error value (called X,,,,, or X,,).

rror

InY, =3.907+0.555In X, +1.081In X, + ©)
+0.293X, +0.4481n X, +1.6251n X,

The error value, the difference between the actual
value and the prediction value, was determined
by adding an error variable to Equation 6. This was
followed by a comprehensive ANOVA and regres-
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Figure 4. The comparison of actual data and predicted
results with error data
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sion testing using SPSS to determine the coeffi-
cients X variables for Equation 7, as shown in Ta-
ble 6. Table 6 shows that all coefficients X variables
are not just statistically significant, but also crucial
in predicting the total energy demand, underscor-
ing the importance of all findings.

InY; =3.910-0.5561In X, —1.0821In X, —0.295X, + (7)
+0.450In X, +1.627In X, —1.644 X,

The resulting error data refers to additional inde-
pendent variable data that can influence the value
of the dependent variable or total energy demand
value (Y). The error data obtained, a result of tho-
rough observation, can be observed in Table 7.
Upon applying the data error. the independent va-
riables are transformed into six X variables, spe-
cifically X, X,, X5, X, X, and X,,. These variables
represent the overall fertilisation energy, pesticide
energy, irrigation power, electric energy, labour
energy, and error value.

Designing mathematical modelling in Python.
The Cobb-Douglas equation was tested by mod-
elling in Python using a Jupyter Notebook. The
equation, a linear one, was applied to a dataset
consistent with prior data, specifically in natural
In. The dataset uses the In transformation for vari-
ables: total energy demand (InY), fertilisation en-
ergy (InX,), pesticide energy (InX,), irrigation ener-
gy (InX;), electrical energy (InX,), and labour energy
(InX;). The study, which aims to understand the

Table 6. The coefficient of X variables for Equation 7 using
ANOVA

Particulars Coeflicients SE P-value
Intercept a, 3.910 0.000 0.000
InX, a, —0.056 0.000 0.000
InX, a, —1.082 0.000 0.000
InX, a;  —0.295 0.000 0.000
InX, ay, 0.450 0.000 0.000
InX, as 1.627 0.000 0.000
Ker e, —1.644 0.000 0.000
R 1

Rr? 1

Adjusted R? 1

SE 7.8-1071°

SE — standard error; R — correlation coefficient; R* — coef-
ficient of determination; InX, — fertiliser energy; InX, —
pesticide energy; InX; — irrigation energy; InX, — electrical

energy; InX; — labour energy
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Table 7. Potato growth phase energy demand in logarithm natural for Equation 7

Growth Period InY InX, InX, InX; InX, InX, X
phase (week) (MJ-ha™l)  (MJ-ha™)  (MJ-ha™!)  (MJ-ha™)  (MJ-ha™!)  (MJha™l)  (MJ-ha™)
1 7.043 2.510 1.254 2.500 6.369 4.573 -0.753
2 5.654 0.000 0.000 2.164 0.000 0.000 -2.075
Vegetative 3 5.654 0.000 0.000 2.164 0.000 0.000 -0.275
4 6.967 3.534 1.297 2.164 5.700 5.111 -4.053
5 7.258 2.761 0.966 2.164 5.330 4.825 -4.090
6 7.582 4.856 0.423 2.164 5.456 4.825 -4.090
7 9.180 4.120 -1.324 2.164 5.155 4.627 -6.477
8 9.181 3.495 -1.321 2.164 5.007 4.416 —6.247
9 8.966 3.757 -1.097 2.164 5.007 4.416 -5.959
Generative 10 7.400 4.807 0.648 2.164 5.456 4.825 —4.350
11 7.419 4.045 0.648 2.164 5.155 4.603 -4.086
12 7.070 4.379 1.100 2.164 5.330 4.821 -3.828
13 7.458 5.198 0.571 2.164 5.456 4.813 -4.411
14 5.763 0.000 2.099 0.000 6.369 5.561 -2.261

InY - total input energy; InX, — fertiliser energy; InX, — pesticide energy; InX; — irrigation energy; InX, — electrical energy;

InX; — labour energy; X,, — error value

energy demand in agriculture, considers the loga-
rithm value of total energy demand (Y) as the de-
pendent variable and includes fertiliser energy (X;),
pesticide energy (X,), irrigation energy (X;), elec-
trical energy (X,), and labour energy (X;) as inde-
pendent factors. An intercept value of 3.907 was
derived from the output, along with the follow-
ing coeflicients: X; (0.055), X, (1.081), X, (0.293),
X, (-0.448), and X, (-1.625) as shown in Table 5.
Equation 6 was derived from these data. However,
the equation yields an R* value of 0.96, indicating
that the accuracy was not 100%.

It is essential to incorporate error numbers from
earlier processes by including the In_Xer variable
with annotated error data to improve the accuracy
of results. The ANOVA results show that the inter-
cept value of 3.91, the coefficient of InX] is —0.056,
the coefficient of InX, is —1.082, the coefficient
of InX; is —0.295, the coefficient of InX, is 0.450,
coefficient of InX; as 1.627, and coefficient of X,
as —1.644 (Table 6). After the value of each vari-
able has been determined, a linear equation with
a regression function is constructed, as shown
in Equation (7). From the modelling produces an R®
value of 1, indicating an accuracy of 100%. This
high level of accuracy should reassure you of the
reliability of our findings. Comparison between ac-
tual data and prediction results through SPSS and
Python, as shown in Table 8.

205

The modelling findings with SPSS and Python
in Table 8 fit the actual data. The equation reveals
that the MAE is 0.11, the MSE is 0.01, and the Root
Mean Square (RMS) is 0.13. These values, while
not ranking number one individually, collectively
demonstrate the high accuracy of the model. This
accuracy is further reinforced by the model’s close
approximation to the actual value.

Image classification design with CNN by phase
growth. The design of image classification with
CNN based on the growth phase is done through
Jupyter Notebooks with Python programming lan-
guage. In this design, data in the form of images
that have been collected previously during the cul-
tivation process of planting potatoes was used and
then was classified based on two phases of growth,
namely vegetative and generative phases, as many
as 1 125 images (McAndrew 2016; Sigalingging
et al. 2023).

TensorFlow and the operating system were uti-
lised to construct a CNN. TensorFlow can train and
execute neural networks for image and object clas-
sification and recognition. The Imghdr library was
utilised to test and identify the image format in the
data. The cv2 library was utilised to display images
in Windows, while the matplotlib module was em-
ployed to visualise data. A CNN is constructed with
multiple hidden layers using a Sequential model,
where each layer is connected to the preceding
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Table 8. Comparison data actual and prediction (MJ-ha™?)

https://doi.org/10.17221/115/2023-RAE

Total energy demand Total energy demand

Growth phase Period (week) Total energy demand prediction by SPSS prediction by Python
1 1 144.601 1 144.601 1 144.601
2 285.418 285.418 285.418
Vegetative 3 285.418 285.418 285.418
4 1 060.614 1 060.614 1 060.614
5 1419.747 1419.747 1419.747
6 1 962.699 1 962.699 1 962.699
7 9 705.967 9 705.967 9 705.967
8 9714.868 9 714.868 9 714.868
9 7 831.926 7 831.926 7 831.926
Generative
10 1635.973 1635.973 1635.973
11 1 667.865 1 667.865 1 667.865
12 1175.704 1175.704 1175.704
13 1733.018 1733.018 1733.018

layer (Figure 2). The Conv2D function is utilised for
convolution. It incorporates the ReLu and Sigmoid
activation functions. At the pooling stage, the
Max-Pooling2D function uses the same filter size
as Convo2D. The Flatten function was then utilised
to transform the data from a 2D format into a vec-
tor. The subsequent phase is the fully connected
layer stage, the ultimate stage for processing data
for classification (Figure 2).

The training process consisted of 100 epochs,
meaning that learning occurred 100 times. Epochs
are beneficial for the model’s learning process using
the given data. Higher epoch values lead to higher
accuracy values. The investigation yielded an ac-
curacy of 99%, precision of 92%, and sensitivity
(recall) of 100%. Accuracy measures a model’s abil-
ity to classify an image correctly. Precision is used
to indicate the level of precision in the categoriza-
tion findings based on the data used. Recall or sen-
sitivity measures how well the model retrieves in-
formation. A data test is conducted to verify the
accuracy of the processed data. Test data is used
to assess the performance of the image categorisa-
tion prediction model.

From the results of the data test conducted, the
image data used is image data in the generative
phase. The CNN modelling system also reads the
image data as an image in the generative phase
where the energy requirement in the generative
phase is 35 746.45 MJ-ha™' and in the vegeta-
tive phase is 4 195.80 MJ-ha™! means the test data
is accurate.
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Using the Cobb-Douglas equation to predict total
energy demand yielded 100 % accuracy, according
to (Sigalingging et al. 2023). In addition, the Cobb-
Douglas equation was transformed into a lin-
ear regression form. Cobb-Douglas was utilised
as an exponential production function in (Hastuti
et al. 2022) to determine the impact of production
factors on the quantity of production generated.

In (Arshad et al. 2023), images of leaf diseases
in potato, apple and tomato plants were used. The
accuracy value of leaf disease prediction in potatoes
is 97.63% with 3 classes and has 2 152 images; in ap-
ples. it is 96.42% with 4 classes and has 3 171 im-
ages; and in tomatoes, it is 94.25% with 10 classes
and has 18 160 images. This proves that the fewer
classes to be classified, the greater the accuracy
of the system in predicting. In addition, (Al-Ad-
haileh et al. 2023) reported that using Fine-Tuned
CNN Architecture can achieve 99% accuracy with
839 203 trainable parameters in 183 s of training
time. Fin-Tuned CNN Architecture can enhance ac-
curacy while reducing computation time, informa-
tion loss, and the number of trainable parameters.

CONCLUSION

The ANOVA regression test of the model has
a constant value of 3.910, with coefficients of in-
puts (X, Xy, X5, X, X5 and X, for fertilisation, pes-
ticide, irrigation, electrical, human energy and er-
ror) values of —0.056, —1.082, —0.295, 0.450, 1.627,
and —1.644, respectively. The CNN modelling was
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designed on a Jupyter notebook with an epoch
of 100 and 5 layers using 1 125 images of potato
plants. The image data used was in the generative
and vegetative phases, with an energy requirement
of 35 746.45 MJ-ha™! in the generative phase and
4.195.80 MJ-ha! in the vegetative phase. The inves-
tigation has an accuracy of 99%, precision of 92%,
and sensitivity (recall) of 100%. The model’s mean
absolute error of 0.11, mean square error of 0.01,
and root mean square of 0.13 show no severe con-
cerns. The study validates deep learning in agricul-
ture and inspires applications to anticipate energy
requirements for each growth phase using plant
image data, opening up exciting possibilities for the
future of agriculture.
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