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Abstract: Agriculture and energy are intricately connected, with agriculture being a significant energy consumer and 
supplier. In this comprehensive study, SPSS and Jupyter Notebook were used to model and predict the energy require-
ments of potato plants during cultivation. A system using deep learning methods, specifically the Convolutional Neural 
Network (CNN), was also developed to accurately predict the classification of potato plant growth phases using image 
data. The CNN model, developed with 100 epochs and 5 layers, used 1 125 image data of potato plants, categorising 
them into two classes: the vegetative phase, with an energy requirement of 4 195.80 MJ·ha–1, and the generative phase, 
with an energy requirement of 746.45 MJ·ha–1. The model‘s accuracy in reflecting the actual data, with a mean absolute 
error of 0.11, mean square error of 0.01, and root mean square of 0.13, indicates no significant issues. The test predicted 
categorization with 99% precision, underscoring the thoroughness and validity of this study and reassuring the audience 
about the accuracy of the results. The study findings not only validate the use of deep learning in agriculture but also 
inspire the development of applications to predict the energy demand for each growth phase using plant image data. 
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The agricultural sector, a  vital part of  the Indo-
nesian economy, is facing a pressing issue of rising 
energy demand due to  mechanised crop produc-
tion practices, growing populations, and limited 
arable land area. The need to optimise instruments 
and technology to meet the expanding population’s 
dietary requirements is urgent. Forecasting energy 
needs can lead to immediate action in production 
process optimisation and reduce wastage like po-

tato crops. In annuals and short-lived dicotyledons, 
potato plants have four growth phases: vegetative, 
initiation, expansion, and maturation.

Agriculture and energy have a  close relation-
ship, with the agricultural sector being one of the 
most significant consumers and suppliers of bioen-
ergy. With mechanised crop production practises, 
increasing populations, increasing high-yielding 
varieties, and limited arable land area, but rising 
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requirements and living standards, the agricultural 
sector's energy demand is  rising rapidly (Gómez 
et al. 2019). It is expected that the agricultural sec-
tor will advance rapidly to complete work more ef-
ficiently, quickly, and effectively with the advance-
ment of technology in the modern era, such as the 
development of software that can mimic human in-
telligence and mechanisation technology that can 
make work more concise.

Deep learning techniques have been used to fore-
cast crop output and growth, and artificial neural 
networks have been employed to  estimate potato 
yield based on  energy inputs. The use of  artificial 
intelligence and mathematical models has been ex-
plored in the field of agriculture to anticipate energy 
consumption (Pishgar-Komleh et  al.  2012; Muazu 
et al. 2014; Bogner et al. 2019; Gómez et al. 2019; 
Mosavi and Bahmani, 2019; Bolandnazar et al. 2020; 
Mehta et al. 2023; Sigalingging et al. 2023). Several 
deep-learning studies have predicted potato output 
and identified diseases. PLDPNet, a  hybrid deep 
learning network, can automatically segment and 
classify potato leaf diseases (Arshad et  al.  2023). 
Energy inputs have been utilised to estimate potato 
output in  Saudi Arabia using artificial neural net-
works (Al-Hamed and Wahby 2016). Another re-
search suggests deep learning for field-based potato 
blight diagnosis (Johnson et  al.  2021; Al-Adhaileh 
et  al.  2023). PotatoPestNet uses a  neural network 
to  identify potato pests automatically (Talukder 
et  al.  2023). Nevertheless, the existing literature 
on using deep learning techniques for about model-
ling potato energy demand forecast in  the context 
of potatoes is limited. 

For fruit analysis, Convolutional neural net-
works (CNNs) and advanced detection models like 
R-CNN and YOLO have been tested for precision, 
recall, and F1 scores (Espinoza et al. 2024). This 
field has data shortages, labelling issues, and fruit 
variety (Espinoza et al., 2024; Khalid 2024). How-
ever, optimizing deep-learning approaches has 
significantly improved fruit categorisation accu-
racy, marking significant progress in the field (Gill 
et al. 2023). Fruit recognition and localisation us-
ing semantic segmentation and deep learning seem 
promising (Maheswari et al. 2021). 

Mechanisation and artificial intelligence soft-
ware are two examples of  technological progress 
improving agriculture productivity and efficiency. 
Artificial intelligence (AI) may be used throughout 
the agricultural process, from fertilisation through 

harvesting and beyond. Deep learning is a branch 
of  AI that employs the concept of  deep artificial 
neural networks to improve data precision. CNNs 
are frequently employed for image learning (Albel-
wi and Mahmood 2017). 

Achieving a  balance between model training 
performance and efficiency is  crucial in  the field 
of  neural network training. This balance is  influ-
enced by  the dataset size, which varies depend-
ing on  task difficulty and model design. For in-
stance, Modified National Institute of  Standards 
and Technology (MNIST) digit identification can 
use 1  489  photos (2.5% of  the dataset) (Aki et  al. 
2017), while complex tasks usually demand larg-
er datasets. Thian et  al.  (2022) found that medi-
cal picture classification performance improved 
with dataset sizes of 20 000–291 000 images. The 
pioneering ImageNet classification model by Kriz-
hevsky et  al.  (2012) used 1.2  million photos. The 
link between dataset size and model performance 
frequently follows a  learning curve with declining 
returns (Szyc 2020; Thian et al. 2022). CNNs and 
hybrid models combining CNNs with artificial neu-
ral networks, have been employed to achieve high 
accuracy in classifying potato diseases with dataset 
sizes range from 1 574 to  34 657 images (Biswas 
and Barma 2021; Hasan et al. 2021).

The output of  individual convolutional lay-
ers may help explain how a  picture transforms 
as  it  traverses a deep CNN. The feature or activa-
tion maps may be  graphically connected to  the 
input picture. Each convolutional layer filters the 
picture using a set of  functions. The feature helps 
relate the learned filter to model performance and 
increase performance (Kuo 2016). Lee et al. (2017) 
found that the hierarchical change of characteris-
tics from lower-level to higher-level abstraction for 
species classes is better represented by plants' dis-
tinct orders of venation than the leaf outline shape. 
Forecasting, which estimates future values using 
past data, can be used to interpret predictions. The 
objective of this study is to develop a modelling sys-
tem that utilises deep learning techniques to fore-
cast the energy requirements of potato plants based 
on growth phase.

MATERIAL AND METHODS

Data collection and processing. Data was col-
lected on  a  significant scale, by  recording all the 
necessary data requirements according to the vari-
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ables determined from planting to harvest in Food 
Estate Hutajulu, Humbang Hasundutan, North Su-
matra, Indonesia. This comprehensive approach 
provides a deep understanding of the subject. Next, 
the collected data was converted into energy units 
(MJ·ha–1) using the energy coefficient as  shown 
in  Table 1. In  addition to  acquiring energy de-
mand data, image data was also collected on potato 
plants. There were 1 125 images of  potato plants 
in the obtained image data.

Modelling design. The design of  energy demand 
modelling was made by  Cobb-Douglas modelling 
in  (1) to  produce energy productivity values. From 
Equation (1), the simplified expression in  Equation 
(3) can be used to predict the value of energy produc-
tivity. The process of designing this equation is assist-
ed by IMD SPSS (Pishgar-Komleh et al. 2012; Arshad 
et al. 2023). The Cobb-Douglas function model is:

Y = f(x) exp(u)	 (1)

where: u – an unidentified parameter that requires esti-
mation from data as a latent variable that modifies the 
model's predictions.

The equation model is transformed into a linear 
equation using the natural logarithm (ln) (Beigi 
et al. 2016):

ln ln( ) ; , , ,
( )

Y X e i ni jj

n
i j i� � � �

��� �0 1
1 2 3 	 (2)

The variable Yi represents the yield of the ith pota-
to, Xij represents the vector of inputs utilised in the 

production process, α0 is a constant, αj represents 
coefficients of inputs, and ei is the error term. Equa-
tion (2) can be reformulated for potato production 
with the eight inputs, assuming that yield depends 
on energy inputs as shown in Equation (3)

ln ln ln ln
ln ln

Y X X X
X X e

i

i

� � � � �
� �
� � � �
� �

0 1 1 2 2 3 3
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	 (3)

where: X1, X2, X3, X4, and X5 – fertilisation, pesticide, 
irrigation, electrical, and human energy, respectively.

The modeling design for energy demand, carried out 
using Python and Jupiter Notebook, determined the 
intercept value and coefficient value of each variable. 
This equation, in the form of multiple linear regres-
sions, is   crucial part of our work. ANOVA, a reli-
able independent statistical method for input-output 
significance, checks for significant output differ-
ences using the F ratio or P value (Amor et al. 2022), 
instilling confidence in our statistical analysis.

CNN design for image classification according 
to growth phases. This design was carried out with 
the Convolutional Neural Network (CNN) method 
using Python through Jupyter Notebook (Figures 1 
and 2), with the following stages:

Dataset collection. At this stage, image data col-
lection was carried out, which is used for research 
every day by taking pictures of potato plants with 
the help of cameras in each growth phase: vegeta-
tive and generative phases. From the dataset col-
lection, 1 125 images were generated for the entire 
image data. Image data began to be taken on potato 

Table 1. The energy coefficient of labour, machinery, fuel, fertiliser, pesticide, irrigation, and potato seed

Particulars Energy coefficient (MJ·unit–1) Unit References
Input  

Labour
women 1.57 person

Yaldız et al. (1993)
man 1.96 person

Diesel 56.31 L Khoshnevisan et al. (2013)
Machinary 64.8

Bolandnazar et al. (2014)
Fertiliser

nitrogen (N) 66.14 kg
potasium (K₂O) 11.15 kg

phospat 12.44 kg
Manuer 0.3 kg Muazu et al. (2014)
Pesticiede 120 kg Mohammadi et al. (2008)
Seeds 3.6 kg Ozkan et al. (2004)
Irrigation 1.02 m³ Bolandnazar et al. (2014)
Output
Potato tuber 3.6 kg Esengun et al. (2007)
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plants aged 20 days after planting (DAP), so  po-
tato plant image data was taken for 70 days after 
20 DAP.

Dataset preprocessing. At  this stage, the image 
data that had been collected were resized to  the 
same size. After resizing the image size, the next 
stage is  to  convert the image into an  array. The 
next stage is  to divide the image data into several 
parts, namely testing data, training data and valida-
tion data. This preprocessing stage is vital because 
the data to be processed must be in a format that 
can be accepted by Convolutional Neural Network 
(CNN). 

Classification. Image classification was carried 
out with the CNN method, with the CNN Convo-
lutional layer helping the neural network on CNN 
to  recognise images based on  their attributes 

so that later, it can predict the phase of the potato 
plant based on  the image. In  classification, there 
are several stages, namely convolution, pooling and 
fully connected layer (Figure 2).

Evaluation. The evaluation stage involves calcu-
lating the predictions' mean absolute error (MAE) 
to determine the CNN model’s accuracy value.

RESULTS AND DISCUSSION

Mathematical modelling with SPSS. In this study, 
the mathematical model was developed based on the 
Cobb-Douglas model. This Cobb-Douglas model-
ling can estimate the relationship between input 
energy (MJ·ha–1) and crop yield (kg·ha–1), and then 
energy productivity (kg·MJ–1) can be  determined 
using Equation 4 during potato cultivation (Hatirli 
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et  al.  2006; Ghoshal and Goswami 2017; Sigaling-
ging  et  al. 2023). The value of  energy productivity 
is calculated by dividing the yield by the total energy 
input (Mohammadi et al. 2008; McAndrew 2016).

Energy productivity= Yield
Input energy total 	 (4) 

Yield= Production
Areas 	  (5)

The data reveals that a potato plant area of 0.13 ha 
resulted in a harvest output of 323 kg. The data in-

dicates that the yield value, calculated using Equati-
on (5) was 2 484.62 kg·ha–1. The total input energy 
value is  derived from the cumulative energy need 
numbers obtained in Table 2. In order to determine 
the coefficient values for each variable of model, the 
subsequent procedure involves transforming the 
secondary data presented in Table 3 into natural lo-
garithms (ln) (Table 4). This conversion is necessary 
to  turn the data into multiple linear forms, which 
can be incorporated into the modelling process.

In this study, there were two variables used, 
namely the dependent variable (Y) and the inde-

Table 3. Potato plant growth energy dataset

Growth phase Period (week) Fertiliser energy 
(MJ·ha–1)

Pesticide energy 
(MJ·ha–1)

Irrigation energy 
(MJ·ha –1)

Electrical energy 
(MJ·ha–1)

Labour energy 
(MJ·ha–1)

Vegetative

1 201.90 708.92 203.87 4.26 25.65
2 0.00 0.00 285.42 0.00 0.00
3 0.00 0.00 285.42 0.00 0.00
4 72.51 679.38 285.42 8.32 14.98
5 157.11 945.23 285.42 12.04 19.95

Generative

6 19.34 1 627.38 285.42 10.61 19.95
7 40.37 9 341.54 285.42 14.33 24.30
8 75.41 9 307.38 285.42 16.63 30.02
9 58.01 7441.85 285.42 16.63 30.02

10 20.30 1 299.69 285.42 10.61 19.95
11 43.51 1 299.69 285.42 14.33 24.91
12 31.14 827.08 285.42 12.04 20.03
13 13.74 1 403.08 285.42 10.61 20.18
14 0.00 304.62 0.00 4.26 9.56

Table 2. Energy productivity and total input energy during potato plant growth

Growth phase Period (week) Energy productivity (kg·MJ–1) Total input energy (MJ·ha–1)

Vegetative

1 2.171 1 144.601
2 8.705 285.418
3 8.705 285.418
4 2.343 1 060.614
5 1.750 1 419.747

Generative

6 1.266 1 962.699
7 0.256 9 705.967
8 0.256 9 714.868
9 0.317 7 831.926

10 1.519 1 635.973
11 1.490 1 667.865
12 2.113 1 175.704
13 1.434 1 733.018
14 7.803 318.430
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pendent variable (X). The dependent variable is to-
tal energy demand (Y), while the independent vari-
ables are energy from fertilisation (X1), pesticides 
(X2), irrigation (X3), electricity (X4), and labour (X5 ) 
as  displayed in  Equations (6 and 7). Table  4 pro-
vides information on the labelling of various energy 
components. Total energy demand is denoted as Y, 
while fertiliser, pesticide, irrigation, electrical, and 
human (labour) energy are denoted as X1, X2, X3, X4, 
and X5, respectively. Then, it proceeds with analysis 
of variance (ANOVA) regression testing using the 
SPSS software (version 25) . The outcomes of  the 
tests that were conducted are presented in Table 5. 

The ANOVA regression test produces a  con-
stant value of  3.907 and the following coefficient 
values for each variable: 0.055 for X1, 1.081 for X2, 
0.293 for X3, –0.448 for X4 and –1.625 for X5. The 
intercept (constant) value of  3.907 is  statistically 
significant as  the P-value <  0.001. The coefficient 
for X1 (fertilisation energy) and X4 (electricity en-
ergy) is not statistically significant (P-value > 0.05). 
On the other hand, the coefficient for X2 (pesticide 
energy), X3 (irrigation energy) and X5 (labour ener-
gy) are statistically significant (P-value < 0.05). The 
R-value of  0.98 indicates a  strong association be-
tween predictors and dependent variables. The R² 
value of 0.96 means the model has 96 % of the vari-
ation in  the dependent variable, which is  reassur-
ing. A high match is confirmed by the Adjusted R² 

score of  0.94, which accounts for the number 
of predictors in the model. 

An equation model was created using each of these 
values to forecast the value of total energy demand 
during potato plant growth (Equation 6). Equation 
6 reveals that the Y value represents total energy 
demand, and the constant coefficient value is 3.907. 
This equation serves as  a  predictive model for to-
tal energy demand, which is presented in Figure 3. 
These results indicate that there are still limitations 

Table 4. Energy needed during potato plant growth using Equation 6 in natural logarithm

Growth phase Period (week) lnY
(MJ·ha–1)

lnX1 

 (MJ·ha–1)
lnX2

(MJ·ha–1)
lnX3

(MJ·ha–1)
lnX4

(MJ·ha–1)
lnX5 

(MJ·ha–1)

Vegetative

1 7.043 2.510 1.254 2.500 6.369 4.573
2 5.654 0.000 0.000 2.164 0.000 0.000
3 5.654 0.000 0.000 2.164 0.000 0.000
4 6.967 3.534 1.297 2.164 5.700 5.111
5 7.258 2.761 0.966 2.164 5.330 4.825

Generative

6 7.582 4.856 0.423 2.164 5.456 4.825
7 9.180 4.120 –1.324 2.164 5.155 4.627
8 9.181 3.495 –1.321 2.164 5.007 4.416
9 8.966 3.757 –1.097 2.164 5.007 4.416

10 7.400 4.807 0.648 2.164 5.456 4.825
11 7.419 4.045 0.648 2.164 5.155 4.603
12 7.070 4.379 1.100 2.164 5.330 4.821
13 7.458 5.198 0.571 2.164 5.456 4.813
14 5.763 0.000 2.099 0.000 6.369 5.561

lnY – total input energy; lnX1 – fertiliser energy; lnX2 – pesticide energy; lnX3 – irrigation energy; lnX4 – electrical 
energy; lnX5 – labour energy

Table 5. The coefficient of X variables for Equation 6 using 
the ANOVA

Particulars Coefficients SE P-value
Intercept α0 3.907 0.536 0.000
lnX1 α1 0.055 0.128 0.678
lnX2 α2 1.081 0.156 0.000
lnX3 α3 0.295 0.092 0.013
lnX4 α4 –0.448 0.353 0.239
lnX5 α5 –1.625 0.440 0.006
R 0.98
R2 0.96
Adjusted R2 0.94
SE 0.30

SE – standard error; R – correlation coefficient; R2 – coef-
ficient of determination; lnX1 – fertiliser energy; lnX2 – 
pesticide energy; lnX3 – irrigation energy; lnX4 – electrical 
energy; lnX5 – labour energy
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as  it  lacks an  error value, resulting in  variations 
in the obtained values. The disparity in results is evi-
dent from the graph depicted in  Figure  3. To  pro-
duce a more accurate prediction value, it  is neces-
sary to find the error value (called Xerror or Xer).

ln . . ln . ln
. . ln . ln

Y X X
X X X

i � � � �
� � �

3 907 0 555 1 081
0 293 0 448 1 625

1 2

3 4 55

	 (6)

The error value, the difference between the actual 
value and the prediction value, was determined 
by adding an error variable to Equation 6. This was 
followed by  a comprehensive ANOVA and regres-

sion testing using SPSS to  determine the coeffi-
cients X variables for Equation 7, as shown in Ta-
ble 6. Table 6 shows that all coefficients X variables 
are not just statistically significant, but also crucial 
in predicting the total energy demand, underscor-
ing the importance of all findings.

ln . . ln . ln .
. ln . ln

Y X X X
X

i � � � � �
� �

3 910 0 556 1 0821 0 295
0 450 1 627

1 2 3

4 XX Xer5 1 644� .
	 (7)

The resulting error data refers to additional inde-
pendent variable data that can influence the value 
of  the dependent variable or  total energy demand 
value (Y). The error data obtained, a result of tho-
rough observation, can be  observed in  Table  7. 
Upon applying the data error. the independent va-
riables are transformed into six X variables, spe-
cifically X1, X2, X3, X4, X5, and Xer. These variables 
represent the overall fertilisation energy, pesticide 
energy, irrigation power, electric energy, labour 
energy, and error value. 

Designing mathematical modelling in Python. 
The Cobb-Douglas equation was tested by  mod-
elling in  Python using a  Jupyter Notebook. The 
equation, a  linear one, was applied to  a  dataset 
consistent with prior data, specifically in  natural 
ln. The dataset uses the ln transformation for vari-
ables: total energy demand (lnY), fertilisation  en-
ergy (lnX1), pesticide energy (lnX2), irrigation ener-
gy (lnX3), electrical energy (lnX4), and labour energy 
(lnX5). The study, which aims to  understand the 
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Figure 3. Comparison of actual data and predicted results

Figure 4. The comparison of actual data and predicted 
results with error data

Table 6. The coefficient of X variables for Equation 7 using 
ANOVA

Particulars Coefficients SE P-value
Intercept α0 3.910 0.000 0.000
lnX1 α1 –0.056 0.000 0.000
lnX2 α2 –1.082 0.000 0.000
lnX3 α3 –0.295 0.000 0.000
lnX4 α4 0.450 0.000 0.000
lnX5 α5 1.627 0.000 0.000
Xerr e0 –1.644 0.000 0.000
R 1
R2 1
Adjusted R2 1
SE 7.8·10–16

SE – standard error; R – correlation coefficient; R2 – coef-
ficient of determination; lnX1 – fertiliser energy; lnX2 – 
pesticide energy; lnX3 – irrigation energy; lnX4 – electrical 
energy; lnX5 – labour energy
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energy demand in agriculture, considers the loga-
rithm value of total energy demand (Y) as the de-
pendent variable and includes fertiliser energy (X1), 
pesticide energy (X2), irrigation energy (X3), elec-
trical energy (X4), and labour energy (X5) as  inde-
pendent factors. An  intercept value of  3.907 was 
derived from the output, along with the follow-
ing coefficients: X1 (0.055), X2 (1.081), X3 (0.293), 
X4 (–0.448), and X5 (–1.625) as  shown in Table 5. 
Equation 6 was derived from these data. However, 
the equation yields an R² value of 0.96, indicating 
that the accuracy was not 100%. 

It is essential to incorporate error numbers from 
earlier processes by  including the ln_Xer variable 
with annotated error data to improve the accuracy 
of results. The ANOVA results show that the inter-
cept value of 3.91, the coefficient of lnX1 is –0.056, 
the coefficient of  lnX2 is  –1.082, the coefficient 
of  lnX3 is  –0.295, the coefficient of  lnX4 is  0.450, 
coefficient of  lnX5 as  1.627, and coefficient of  Xer 
as  –1.644 (Table  6). After the value of  each vari-
able has been determined, a  linear equation with 
a  regression function is  constructed, as  shown 
in Equation (7). From the modelling produces an R² 
value of  1, indicating an  accuracy of  100%. This 
high level of  accuracy should reassure you of  the 
reliability of our findings. Comparison between ac-
tual data and prediction results through SPSS and 
Python, as shown in Table 8.

The modelling findings with SPSS and Python 
in Table 8 fit the actual data. The equation reveals 
that the MAE is 0.11, the MSE is 0.01, and the Root 
Mean Square (RMS) is  0.13. These values, while 
not ranking number one individually, collectively 
demonstrate the high accuracy of  the model. This 
accuracy is further reinforced by the model’s close 
approximation to the actual value.

Image classification design with CNN by phase 
growth. The design of  image classification with 
CNN based on the growth phase is done through 
Jupyter Notebooks with Python programming lan-
guage. In  this design, data in  the form of  images 
that have been collected previously during the cul-
tivation process of planting potatoes was used and 
then was classified based on two phases of growth, 
namely vegetative and generative phases, as many 
as  1 125 images (McAndrew 2016; Sigalingging 
et al. 2023). 

TensorFlow and the operating system were uti-
lised to construct a CNN. TensorFlow can train and 
execute neural networks for image and object clas-
sification and recognition. The Imghdr library was 
utilised to test and identify the image format in the 
data. The cv2 library was utilised to display images 
in Windows, while the matplotlib module was em-
ployed to visualise data. A CNN is constructed with 
multiple hidden layers using a  Sequential model, 
where each layer is  connected to  the preceding 

Table 7. Potato growth phase energy demand in logarithm natural for Equation 7 

Growth
phase

Period 
(week)

lnY
(MJ·ha–1)

lnX1 

 (MJ·ha–1)
lnX2

(MJ·ha–1)
lnX3

(MJ·ha–1)
lnX4

(MJ·ha–1)
lnX5 

(MJ·ha–1)
Xer

(MJ·ha–1)

Vegetative

1 7.043 2.510 1.254 2.500 6.369 4.573 –0.753
2 5.654 0.000 0.000 2.164 0.000 0.000 –2.075
3 5.654 0.000 0.000 2.164 0.000 0.000 –0.275
4 6.967 3.534 1.297 2.164 5.700 5.111 –4.053
5 7.258 2.761 0.966 2.164 5.330 4.825 –4.090

Generative

6 7.582 4.856 0.423 2.164 5.456 4.825 –4.090
7 9.180 4.120 –1.324 2.164 5.155 4.627 –6.477
8 9.181 3.495 –1.321 2.164 5.007 4.416 –6.247
9 8.966 3.757 –1.097 2.164 5.007 4.416 –5.959

10 7.400 4.807 0.648 2.164 5.456 4.825 –4.350
11 7.419 4.045 0.648 2.164 5.155 4.603 –4.086
12 7.070 4.379 1.100 2.164 5.330 4.821 –3.828
13 7.458 5.198 0.571 2.164 5.456 4.813 –4.411
14 5.763 0.000 2.099 0.000 6.369 5.561 –2.261

lnY – total input energy; lnX1 – fertiliser energy; lnX2 – pesticide energy; lnX3 – irrigation energy; lnX4 – electrical energy; 
lnX5 – labour energy; Xer – error value
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layer (Figure 2). The Conv2D function is utilised for 
convolution. It incorporates the ReLu and Sigmoid 
activation functions. At  the pooling stage, the 
Max-Pooling2D function uses the same filter size 
as Convo2D. The Flatten function was then utilised 
to transform the data from a 2D format into a vec-
tor. The subsequent phase is  the fully connected 
layer stage, the ultimate stage for processing data 
for classification (Figure 2). 

The training process consisted of  100 epochs, 
meaning that learning occurred 100 times. Epochs 
are beneficial for the model’s learning process using 
the given data. Higher epoch values lead to higher 
accuracy values. The investigation yielded an  ac-
curacy of  99%, precision of  92%, and sensitivity 
(recall) of 100%. Accuracy measures a model’s abil-
ity to classify an image correctly. Precision is used 
to indicate the level of precision in the categoriza-
tion findings based on the data used. Recall or sen-
sitivity measures how well the model retrieves in-
formation. A  data test is  conducted to  verify the 
accuracy of  the processed data. Test data is  used 
to assess the performance of the image categorisa-
tion prediction model.

From the results of  the data test conducted, the 
image data used is  image data in  the generative 
phase. The CNN modelling system also reads the 
image data as   an  image in  the generative phase 
where the energy requirement in  the generative 
phase is  35 746.45 MJ·ha–1 and in  the vegeta-
tive phase is 4 195.80 MJ·ha–1 means the test data 
is accurate.

Using the Cobb-Douglas equation to predict total 
energy demand yielded 100 % accuracy, according 
to (Sigalingging et al. 2023). In addition, the Cobb-
Douglas equation was transformed into a  lin-
ear regression form. Cobb-Douglas was utilised 
as an exponential production function in (Hastuti 
et al. 2022) to determine the impact of production 
factors on the quantity of production generated.

In (Arshad et  al.  2023), images of  leaf diseases 
in potato, apple and tomato plants were used. The 
accuracy value of leaf disease prediction in potatoes 
is 97.63% with 3 classes and has 2 152 images; in ap-
ples. it  is 96.42% with 4 classes and has 3 171 im-
ages; and in tomatoes, it  is 94.25% with 10 classes 
and has 18 160  images. This proves that the fewer 
classes to  be  classified, the greater the accuracy 
of  the system in  predicting. In  addition, (Al-Ad-
haileh et  al.  2023) reported that using Fine-Tuned 
CNN Architecture can achieve 99% accuracy with 
839  203  trainable parameters in  183  s of  training 
time. Fin-Tuned CNN Architecture can enhance ac-
curacy while reducing computation time, informa-
tion loss, and the number of trainable parameters.

CONCLUSION

The ANOVA regression test of  the model has 
a  constant value of  3.910, with coefficients of  in-
puts (X1, X2, X3, X4, X5 and Xer for fertilisation, pes-
ticide, irrigation, electrical, human energy and er-
ror) values of –0.056, –1.082, –0.295, 0.450, 1.627, 
and –1.644 , respectively. The CNN modelling was 

Table 8. Comparison data actual and prediction (MJ·ha–1)

Growth phase Period (week) Total energy demand Total energy demand  
prediction by SPSS

Total energy demand 
prediction by Python

Vegetative

1 1 144.601 1 144.601 1 144.601
2 285.418 285.418 285.418
3 285.418 285.418 285.418
4 1 060.614 1 060.614 1 060.614
5 1 419.747 1 419.747 1 419.747

Generative

6 1 962.699 1 962.699 1 962.699
7 9 705.967 9 705.967 9 705.967
8 9 714.868 9 714.868 9 714.868
9 7 831.926 7 831.926 7 831.926

10 1 635.973 1 635.973 1 635.973
11 1 667.865 1 667.865 1 667.865
12 1 175.704 1 175.704 1 175.704
13 1 733.018 1 733.018 1 733.018
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designed on  a  Jupyter notebook with an  epoch 
of  100 and 5 layers using 1 125 images of  potato 
plants. The image data used was in the generative 
and vegetative phases, with an energy requirement 
of  35 746.45 MJ·ha–1 in  the generative phase and 
4 195.80 MJ·ha–1 in the vegetative phase. The inves-
tigation has an accuracy of 99%, precision of 92%, 
and sensitivity (recall) of 100%. The model’s mean 
absolute error of 0.11, mean square error of 0.01, 
and root mean square of 0.13 show no severe con-
cerns. The study validates deep learning in agricul-
ture and inspires applications to anticipate energy 
requirements for each growth phase using plant 
image data, opening up exciting possibilities for the 
future of agriculture.
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