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Abstract: The rapid growth of the food industry necessitates rigorous quality control, particularly in egg production.
This study explores advanced methodologies for egg quality assessment by integrating the Principal Component Ana-
lysis (PCA), Linear Discriminant Analysis (LDA), and k-Nearest Neighbour (KNN) with machine vision techniques.
While traditional destructive methods like measuring the Haugh unit (HU) offer direct insights, but render eggs unusa-
ble, non-destructive techniques, such as imaging and spectroscopy, allow continuous quality monitoring. Over a 20-day
period, egg samples were evaluated using a digital camera to capture key parameters like the albumen and yolk heights.
The study’s image processing involved noise reduction, feature extraction, and calibration. The PCA captured 90.18%
of the data variability, while LDA achieved 100% classification accuracy, and KNN demonstrated 80% accuracy. These
findings underscore the effectiveness of combining machine vision with statistical methods to enhance the egg grading

accuracy, contributing to consumer safety and industry standards.
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The food industry has experienced significant
growth and development worldwide in recent dec-
ades (Wik et al. 2008). This expansion is driven by the
increasing consumer demand, advancements in tech-
nologies, and globalisation (Lambin & Meyfroidt
2011). As the industry continues to evolve, the impor-
tance of maintaining high standards of product qual-
ity has become paramount (Teece 2000). The imple-
mentation of efficient methods for calculating product
quality factors is essential (Earle & Earle 1997). These
methods ensure that food products meet the required
standards for safety, nutrition, and consumer satisfac-
tion. The accurate and reliable quality assessment not
only helps in maintaining consumer trust, but also
in complying with regulatory requirements and en-
hancing the overall competitiveness of food products

in the global market (Kotsanopoulos & Arvanitoyan-
nis 2017). By adopting advanced methods and tech-
nologies, manufacturers can better monitor and con-
trol various factors that influence the quality of their
products (Ammar et al. 2021; Sheidaee et al. 2022).
This proactive approach enables the industry to deliv-
er consistently high-quality food products, ultimately
contributing to the health and well-being of con-
sumers worldwide (Augustin et al. 2016; Farhangi &
Sheidaee 2024). Eggs are a vital component of the hu-
man diet, renowned for their rich nutritional profile
that includes protein, minerals, vitamins, and fatty
acids (Karsten et al. 2010; Anderson 2011). As a sig-
nificant segment of the food industry, egg production
and processing require effective management and
cost-efficient measures to ensure the quality of the
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input products (Mooee & Sandgeound 1956). De-
structive methods involve breaking the egg to directly
measure various quality indices (Hamilton 1982). One
significant advantage of these methods is the direct
access to the Haugh unit (HU), a widely recognised
measure of egg quality that correlates the egg weight
with the height of the albumen (egg white) (Ahammed
et al. 2014). The precise measurement of the Haugh
unit provides valuable insights into the freshness and
internal quality of the egg (Karoui et al. 2006). Despite
the loss of the egg in the process, the accuracy of the
data obtained through destructive testing is highly
beneficial for research and industry standards (Karoui
et al. 2009). Non-destructive methods, on the other
hand, allow for the assessment of egg quality without
compromising the integrity of the egg (De Ketelaere
et al. 2004). Techniques, such as imaging and spec-
troscopy, enable the evaluation of external shape and
internal egg characteristics, including the shell qual-
ity, albumen, and yolk measurements (Loffredi et al.
2021). These methods are particularly advantageous
for large-scale operations where preserving the egg
for sale or further processing is crucial (Asche et al.
2018). Non-destructive testing is also beneficial for the
continuous monitoring of egg quality, enhancing
the ability to maintain consistent standards and detect
issues promptly (Chen et al. 2021). In a notable study
by Omid et al. (2013), a sophisticated system based on
machine vision and artificial intelligence techniques
was developed to grade egg samples. This innovative
approach employed the Hue-Saturation-Value (HSV)
colour space to accurately detect the size, cracks, and
breakage of eggshells. By integrating the Mamdani
fuzzy logic method with the centre average method
for defuzzification, the researchers achieved remark-
able classification rates: 95% for size detection, 94.5%
for crack detection, and 98% for breakage detection
(Omid et al. 2013). Ramirez-Gutiérrez et al. (2019)
conducted a study to explore the use of computer vi-
sion for detecting any deformations on the curved
surfaces of eggshells. The research involved analys-
ing 75 eggs without deformations and 75 eggs with
deformations. The vision system employed consist-
ed of a camera with a charge-coupled device (CCD)
sensor and a laser-structured light pattern, operat-
ing under lighting conditions with concentrations
lower than 1 lux to capture the images accurately
(Ramirez-Gutiérrez et al. 2019). Zhang et al. (2015)
utilised a combination of hyperspectral imaging and
multivariate analysis to evaluate the internal quality
of eggs. The hyperspectral imaging system comprised
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a CCD camera, an imaging spectrometer, a light
unit, a motorised horizontal stage, and the Spectral
Image System (V1OE software). A spectral analysis
was employed to estimate the Haugh unit (HU), while
a morphological analysis of the images detected bub-
ble formation and scattered yolk. The support vector
classification (SVC) model achieved precision rates
of 90.0% for detecting internal bubbles and 96.3%
for identifying scattered yolk, with an HU estimation
accuracy of 84%. This approach demonstrates the po-
tential of advanced imaging and analytical techniques
in enhancing the destructive assessment of egg quality
(Hamilton 1982; Mertens et al. 2011). Non-destructive
methods for egg quality assessment allow one to eval-
uate internal characteristics without damaging the egg
to assess the chicken egg fertility (Zhihui et al. 2015;
Adegbenjo et al. 2020; Saifullah & Drezewski 2022),
egg grading system (De Ketelaere et al. 2004), shell egg
quality and freshness evaluation (Liu et al. 2020; Lof-
fredi et al. 2021), raw egg freshness (Dutta et al. 2003;
Akbarzadeh et al. 2019; Qi et al. 2020), internal qual-
ity (Mehdizadeh et al. 2014; Zhang et al. 2015), egg
content determination in dry pasta (Fodor et al. 2011),
detect abnormal chicken eggs (Kim et al. 2022), visu-
alisation of the gel springiness of preserved eggs (Li et
al. 2021; Chen et al. 2023), yolk index (Sun et al. 2016),
egg cracking (Li et al. 2012; Shi et al. 2022), storage
the egg (Narushin et al. 2023), to calculate the egg vol-
ume and surface area (Narushin et al. 2020; Narushin
etal. 2021), determine the S-ovalbumin content in egg
storage (Fu et al. 2019; Yao et al. 2022; Yao et al. 2023),
and to identify the gender of chicken eggs (Zhu et al.
2021; Schreuder et al. 2024). The analysis of the egg
quality is a pivotal aspect of the food industry, ensur-
ing the delivery of high-standard products to con-
sumers (Eddin et al. 2019). Traditional assessment
methods are often subjective and labour-intensive,
highlighting the need for more efficient and precise
techniques (Okinda et al. 2020; Castro et al. 2023).
This study introduces an advanced approach by uti-
lising image processing in conjunction with principal
component analysis (PCA) (Uysal & Boyaci 2020),
linear discriminant analysis (LDA) (Zhao et al. 2010),
and k-nearest neighbour (KNN) (Rachmawanto et al.
2020). These techniques facilitate the detailed meas-
urement of critical parameters, such as the albumen
height, yolk height, and yolk diameter. By integrating
PCA, LDA, and KNN, this research aims to establish
a robust and objective framework for the egg quality
analysis, significantly enhancing the accuracy and reli-
ability of the grading process.
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This work aims to develop a novel method for the
egg quality assessment based on advanced machine
vision techniques. PCA, LDA, and KNN were em-
ployed to extract and analyse key egg quality fea-
tures, including the albumen height, yolk height,
and yolk diameter. The relationship between these
parameters and the egg quality, measured by the
Haugh unit (HU), was assessed. This integrated ap-
proach offers a precise model for egg grading, with
potential applications in enhancing the food qual-
ity control analysis.

MATERIAL AND METHODS

Preparation of the samples

In this study, two hundred fresh, intact egg sam-
ples were purchased from a store in Karaj, Iran, and
kept in a laboratory at 26 + 2 °C, out of the refriger-
ator. The egg samples were divided into five groups
of forty eggs. The testing period spanned 20 days,
with evaluations performed at four-day intervals
(Sheydaee & Bazyar 2021). A box was simulated
in 3D using SolidWorks software (version 2018)
and constructed from wood to minimise any envi-
ronmental noise effects (Figure 1). The box dimen-
sions were 60 x 60 x 50 cm, and it included a light
box measuring 15 x 15 x 20 cm, containing a 7-W
surface-mount device (SMD) bulb. To ensure uni-
form light orientation for the morphological analy-
sis, a dark environment was designed in the box
(Stinco et al. 2013; Yu et al. 2013).

An HTC One X9 smartphone was used to ac-
quire the sRGB images within an imaging system
that included a digital camera, an illumination box,
and a computer. The phone camera, with a reso-
lution of 4 160 x 2 368 pixels and a focal length
of 27 mm, was fixed approximately 200 mm hori-
zontally from the egg centre. Data were transferred
to a Lenovo laptop (Windows 10 Enterprise, Intel

(D)

(A) (B (©)

Core i5, NVIDIA GeForce GT740M, 4GB RAM)
via a USB for image processing (Figure 1) (Shey-
daee & Bazyar 2021).

Egg Weight

The nutrient content of eggs is influenced
by multiple factors, with the weight of the egg be-
ing a primary determinant. These factors include
the heredity, breed, strain, age of the hen, body size,
feed and water consumption, ambient temperature,
and the presence of diseases (Sekeroglu & Altuntas
2009). The egg weight stands out as a crucial indica-
tor of an egg’s quality. To evaluate this, samples are
weighed using an electronic balance scale, specifi-
cally a Jadever scale model, which offers a precision
of 0.01 g. This level of accuracy ensures that even
slight variations in egg weight are detected, provid-
ing reliable data for assessing the egg quality.

Images pre-processing and data preparation

Images captured by a smartphone camera were
stored in.jpg format and processed using MAT-
LAB® (version 2022b). The processing involved
an algorithm designed to identify the height of the
albumin in the egg, consisting of two main steps:

(i) Image Pre-processing: This step involved
evaluating the best methods for filtering and seg-
mentation to reduce the noise and enhance the im-
age quality during the test period. The goal was to
modify any noise present in the image and to ex-
tract the necessary information about the eggs.

(ii) Image Analysis: This step focused on analys-
ing the light pattern within the image to extract fea-
tures from the selected pixels.

The initial step of pre-processing involved ex-
tracting useful information from the RGB image
to separate the important regions from the basic
image. This important region is known as the re-
gion of interest (ROI). One of the important steps
in pre-processing images for the albumin height

Figure 1. Illustrates the egg
quality assessment system,
which includes the following
components: (A) a light box,
(B) a smartphone, (C) a laptop
and (D) broken egg on a surface
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detection is the application of low-pass filter op-
erations (Figure 2A). This technique is instrumen-
tal in exploring significant relationships between
the spatial and frequency domains of the images
(Davies 2012). In this study, Gaussian and median
smooth filtering were employed to eliminate signal
components with high spatial frequencies. These
filters effectively reduce the noise and enhance
the image quality, facilitating a more accurate anal-
ysis of the albumin height in the eggs. In our meth-
od, a binary process is employed to identify objects
within a white sample set against a black back-
ground. This is achieved using the Otsu threshold-
ing method (Ye et al. 2001), which automatically
calculates a threshold for a grayscale image. By em-
ploying the ,,,, function (Equation 1), this meth-
od minimises the interclass variance of black and
white pixels to obtain a binary image. This binary
image is crucial for accurately distinguishing and
analysing the objects within the sample.

0 7
X _ lf]lmage < Totsu
]bmu",V = {255 (otherwise) (1)

where: Iy, — the binary image; I;,,,, — the intensity of pixel
of grayscale image; T, — the limit of Otsu threshold; T,
— limit for red channel; I, —the pixels including yellow
colour; Imin — the pixels including white colour

In this research, the height of the albumin was deter-
mined using morphological operations based on image
processing functions to segment the yolk and albumin

areas in the image. To distinguish the egg yolk, the pro-

(A)

(B)

Figure 2. The process of egg images

(A) original image; (B) yolk separation; (C) albumin separation

98

https://doi.org/10.17221/86/2024-RAE

cessing method focused on the red channel (:,;,1) of the
RGB colour image. This approach followed the T,
method for yolk identification (Equation 2), ensuring
the accurate segmentation and measurement of the
yolk and albumin regions (Figure 2B).

Ivo]k = O if‘li’"age < Tvalk
’ 255

(otherwise) (2)
where: I, —the pixels including yellow colour; ;g —
the intensity of pixel of grayscale image; T}, — limit for red
channel

At this stage, the albumin image (I ,,.;,) is cal-
culated by subtracting the yolk image (/,o;) from
the binary image (};,4ry), as described in Equation 3.
This subtraction operation, applied to the images
of the same size, is used to extract the area of inter-
est, specifically isolating the albumin region from
the rest of the image (Figure 2C).

Ialbumin= Ibimzry - Iyolk: [W | w Ibimzr)/ w Iyolk] (3)
where: I, — the pixels including white colour; Ij;uqry —
the binary image; I, —the pixels including yellow colour;
w — proposed pixels extracted from images

Calibration is essential to validate the extract-
ed features in our image processing method.
The region of interest (ROI) in the image meas-
ured 60 mm (943.31 pixels) in width and 220 mm
(3 493.41 pixels) in length. This method allows
the pixel count of the image to be accurately scaled
to millimetre units. The discrepancy between
the actual millimetre size and the image process-
ing results is less than 0.32 mm, ensuring high ac-
curacy in the measurement and validation process.
The network algorithm presented in this research
was implemented in Python software (version 3.6)
using Keras library on TensorFlow platform to per-
form all the processing and classification processes
of the egg images.

Haugh Unit

According to the Haugh unit (Brant 1951), eggs
are categorised into three quality grades based on
their firmness: grade AA: firm, top quality (Haugh
unit > 72); grade A: reasonably firm, lower quality
(Haugh unit 60-71); grade B: weak, deteriorated
quality (Haugh unit < 60).

The Haugh unit score is calculated using
the weight of the egg and the height of the albu-



Research in Agricultural Engineering, 71, 2025 (2): 95-104

Original Paper

https://doi.org/10.17221/86/2024-RAE

min for each individual egg, based on the formula
(Equation 4) established by Haugh (1937):

HU = 100 log, , (H — 1.7 W*7 + 7.6) (4)

where: HU — the observed Haugh unit; H — the height
of the albumin; W — the weight of the egg (Haugh 1937)

This formula provides a quantitative measure
to assess the quality of eggs.

RESULTS AND DISCUSSION

The results from the image processing analysis of 7,
and I,,.;, images, reveal a decline in egg quality over
time-based on the albumin height and Haugh unit
measurements. Initially, on the first and fourth days,
the eggs maintained a high Haugh unit, indicating they
were intact and of AA-grade quality. By the eighth
and twelfth days, some eggs had dropped to grade A.
By the sixteenth day, with the mean Haugh unit falling

(A) Haugh unit

Index

Haugh unit

©

Yolk height (pixel)

Albumin height (pixel)

below 72, the eggs were downgraded to either grade
A or B, necessitating further quality assessment to en-
sure their suitability for consumption (Figure 3A).
Based on the analysed images, six distinct features
were extracted from the dataset, offering compre-
hensive insights into the characteristics and quality
of the eggs. These features include egg weight, which
measures the overall mass of the egg; albumin height,
indicating the height of the egg white (albumin); and
yolk height, which denotes the height of the egg yolk.
Additionally, the yolk diameter is measured to under-
stand the size of the yolk, while the yolk index, a ratio
of the yolk height to yolk diameter, provides insight
into the yolk’s quality and firmness. Collectively, these
features enable a detailed analysis of the egg quality, es-
sential for meeting consumer standards and optimis-
ing industrial processes. The analysis of the obtained
data reveals three distinct classes observed over con-
secutive days, distinguished by variations in the height
of the albumin and the ratio of the yolk height to the
yolk diameter. These classes indicate consistent pat-
terns and trends in the egg quality metrics over time.

(B) Albumin height (pixel)

Albumin height (pixel)

Figure 3. Performance of various classifiers in grading

egg quality
(A) haugh unit; (B) albumin height; (C) albumin height vs
yolk height
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The height of the albumin is an important indicator
of egg freshness, with higher values generally signify-
ing fresher eggs (Figure 3B). Meanwhile, the ratio of the
yolk height to the albumin height, provides insights
into the egg quality (Figure 3C). By categorising the six
features into these three classes, it becomes possible
to track and predict changes in the egg quality, aiding
producers in maintaining high standards and optimis-
ing storage and handling processes to ensure the deliv-
ery of fresh, high-quality egg production.

Principal component analysis. Principal Com-
ponent Analysis (PCA) is a powerful dimensional-
ity reduction technique widely used in data analysis
and machine learning (Hasan & Abdulazeez 2021).
By transforming high-dimensional data into a lower-
dimensional space, PCA can reveal patterns and sim-
plify the analysis of complex datasets (Ray et al. 2021).
PCA transforms the original features into a new set
of orthogonal features known as principal compo-
nents (Wold et al. 1987). These components are linear
combinations of the original features, ordered by the
amount of variance they explain in the data (Demsar et
al. 2013). By focusing on the top principal components,
we can capture the most significant patterns in the data
while reducing the complexity (Aschard et al. 2014).
Our dataset consists of six features and one target vari-
able. The features are numerical variables that describe
various aspects of the data, while the target variable
represents different classes or categories. For our data-

nCIp
/
CompOn
Gnt 7
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set, we performed a PCA and extracted five principal
components. This number of components was chosen
to capture most of the variability in the data while keep-
ing the model interpretable and manageable. Principal
Component Analysis (PCA) has proven to be a robust
method for retaining critical information in datasets,
as evidenced by its ability to explain 90.18% of the to-
tal variation with just five components. Breaking this
down further, the first principal component (PC1) ac-
counts for 27.0% of the variation, the second principal
component (PC2) captures 30.0%, and the third prin-
cipal component (PC3) explains an impressive 43.0%
of the variation (Figure 4).

Additionally, there was clear separation between
the three egg qualities which can be marketed
as AA, A and B, with one sample containing its
quality situated in among the three groups.

Linear discriminant analysis. Linear discri-
minant analysis (LDA) is a powerful classification
technique used to differentiate between categories
based on multiple features (Xanthopoulos et al.
2013). In this study, LDA was employed to clas-
sify eggs into three quality categories: AA, A, and
B. The classification was based on six essential fea-
tures: the egg weight, albumin height, yolk height,
yolk diameter, yolk index, and Haugh unit (HU).
The LDA model demonstrated remarkable per-
formance, achieving 100% accuracy in classifying
the eggs into their respective categories. This per-

Target AA
Target A
Target B

Figure 4. 3D scatter plot of the three principal
components (PC1: 27%, PC2: 30%, and PC3:
43%) with features and targets: AA (firm),
A (reasonably firm), and B (weak)
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LDA of training data with custom class colors

LDA component 2

LDA component 1

fect classification indicates that the selected fea-
tures are highly effective in distinguishing between
different quality grades of eggs, ensuring no mis-
classifications occurred. The effectiveness of the
LDA model was further validated through a scatter
plot (Figure 5).

Additionally, the analysis revealed a clear separa-
tion between the three egg quality categories AA,
A, and B though one sample was positioned among
these groups. This observation further reinforces
the capability of linear discriminant analysis to ef-
fectively distinguish between different egg grades,
ensuring the precise classification across the varying
quality levels.

K-nearest neighbour algorithm. The K-nearest
neighbour (KNN) algorithm, a cornerstone in ma-
chine learning for classification and regression
tasks, operates on the principle that data points

Confusion matrix

True

Predicted

Figure 5. Linear discriminant analysis
(LDA) classifier for the egg quality — scat-
ter plot

with similar features are likely to have similar out-
comes (Xie et al. 2024). Recently, this technique
was employed to classify eggs based on six spe-
cific features: the egg weight, albumin height, yolk
height, yolk diameter, yolk index, and Haugh unit.

The KNN model achieved an accuracy rate
of 80%, demonstrating its effectiveness in dis-
tinguishing between the different egg categories.
The model’s performance is further evaluated
through a confusion matrix for test data (Figure 6),
which provides a detailed breakdown of correct
and incorrect classifications, offering insights into
the model’s accuracy and highlighting areas for po-
tential refinement.

Future work
In future research, the integration of deep learning
techniques could significantly enhance the accuracy

Figure 6. Confusion matrix depicting
the K-nearest neighbour (KNN) algorithm
performance in the egg quality classification
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and efficiency of egg quality classification. Deep learn-
ing models, such as convolutional neural networks
(CNNs), offer the ability to automatically extract
complex features from high-dimensional image data,
potentially improving the detection of subtle qual-
ity variations that traditional methods might miss.
Implementing a deep learning-based classifier could
streamline the process, allowing for a more nuanced
analysis of egg characteristics beyond the capabilities
of conventional image processing methods. Addition-
ally, exploring the use of transfer learning, where pre-
trained models are adapted for specific egg quality
tasks, could accelerate the development process and
yield high-performing models with minimal train-
ing data. By combining deep learning with existing
methodologies like SVM, LDA, and KNN, future work
could deliver a more robust and comprehensive system
for egg quality assessment, further advancing the food
industry’s ability to ensure product excellence.

CONCLUSION

In conclusion, this study advances the field of egg
quality assessment by integrating sophisticated ma-
chine vision techniques with statistical analyses, such
as PCA, LDA, and KNN. By employing these meth-
ods, the research effectively enhances the accuracy and
reliability of egg grading systems, which are crucial
for maintaining high standards in the food industry.
The innovative approach allows for the precise meas-
urement of key egg quality parameters, such as the al-
bumen height and yolk characteristics, and provides
arobust framework for the continuous monitoring and
classification. Notably, the LDA model demonstrated
exceptional performance, achieving a perfect accu-
racy rate of 100%, thereby ensuring flawless classifica-
tion of egg quality grades. This high level of accuracy
underscores the effectiveness of the selected features
and the robustness of the LDA model. The integration
of these advanced techniques not only improves the ef-
ficiency of quality control processes, but also ensures
that consumers receive eggs that consistently meet
safety and nutritional standards, thus contributing
to overall public health and industry competitiveness.
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