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The food industry has  experienced significant 
growth and development worldwide in  recent dec-
ades (Wik et al. 2008). This expansion is driven by the 
increasing consumer demand, advancements in tech-
nologies, and globalisation (Lambin & Meyfroidt 
2011). As the industry continues to evolve, the impor-
tance of maintaining high standards of product qual-
ity has become paramount (Teece 2000). The imple-
mentation of efficient methods for calculating product 
quality factors is essential (Earle & Earle 1997). These 
methods ensure that food products meet the required 
standards for safety, nutrition, and consumer satisfac-
tion. The accurate and reliable quality assessment not 
only helps in  maintaining consumer trust, but also 
in  complying with regulatory requirements and en-
hancing the overall competitiveness of food products 

in the global market (Kotsanopoulos & Arvanitoyan-
nis 2017). By adopting advanced methods and tech-
nologies, manufacturers can better monitor and con-
trol various factors that influence the quality of their 
products (Ammar et al. 2021; Sheidaee et al. 2022). 
This proactive approach enables the industry to deliv-
er consistently high-quality food products, ultimately 
contributing to  the health and well-being of  con-
sumers worldwide (Augustin et al. 2016; Farhangi & 
Sheidaee 2024). Eggs are a vital component of the hu-
man diet, renowned for  their rich nutritional profile 
that  includes protein, minerals, vitamins, and fatty 
acids (Karsten et al. 2010; Anderson 2011). As a sig-
nificant segment of the food industry, egg production 
and processing require effective management and 
cost-efficient measures to  ensure the  quality of  the 
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input products (Mooee & Sandgeound 1956). De-
structive methods involve breaking the egg to directly 
measure various quality indices (Hamilton 1982). One 
significant advantage of  these methods is the  direct 
access to  the Haugh unit (HU), a  widely recognised 
measure of egg quality that correlates the egg weight 
with the height of the albumen (egg white) (Ahammed 
et al. 2014). The precise measurement of  the Haugh 
unit provides valuable insights into the freshness and 
internal quality of the egg (Karoui et al. 2006). Despite 
the loss of the egg in the process, the accuracy of the 
data obtained through destructive testing is highly 
beneficial for research and industry standards (Karoui 
et al. 2009). Non-destructive methods, on the  other 
hand, allow for the assessment of egg quality without 
compromising the  integrity of  the egg (De Ketelaere 
et al. 2004). Techniques, such as  imaging and spec-
troscopy, enable the evaluation of external shape and 
internal egg characteristics, including the shell qual-
ity, albumen, and yolk measurements (Loffredi et al. 
2021). These methods are particularly advantageous 
for  large-scale operations where preserving the  egg 
for sale or further processing is crucial (Asche et al. 
2018). Non-destructive testing is also beneficial for the 
continuous monitoring of  egg quality, enhancing 
the ability to maintain consistent standards and detect 
issues promptly (Chen et al. 2021). In a notable study 
by Omid et al. (2013), a sophisticated system based on 
machine vision and artificial intelligence techniques 
was developed to grade egg samples. This innovative 
approach employed the Hue-Saturation-Value (HSV) 
colour space to accurately detect the size, cracks, and 
breakage of  eggshells. By  integrating the  Mamdani 
fuzzy logic method with the  centre average method 
for defuzzification, the researchers achieved remark-
able classification rates: 95% for size detection, 94.5% 
for  crack detection, and 98% for  breakage detection 
(Omid et al. 2013). Ramírez-Gutiérrez et al. (2019) 
conducted a study to explore the use of computer vi-
sion for  detecting any deformations on the  curved 
surfaces of  eggshells. The  research involved analys-
ing 75 eggs without deformations and 75 eggs with 
deformations. The  vision system employed consist-
ed of a camera with a charge-coupled device (CCD) 
sensor and a  laser-structured light pattern, operat-
ing under lighting conditions with concentrations 
lower than 1 lux to  capture the  images accurately 
(Ramírez-Gutiérrez et al. 2019). Zhang et al. (2015) 
utilised a combination of hyperspectral imaging and 
multivariate analysis to  evaluate the  internal quality 
of eggs. The hyperspectral imaging system comprised 

a  CCD camera, an  imaging spectrometer, a  light 
unit, a  motorised horizontal stage, and the  Spectral 
Image System (v10E software). A  spectral analysis 
was employed to estimate the Haugh unit (HU), while 
a morphological analysis of the images detected bub-
ble formation and scattered yolk. The support vector 
classification (SVC) model achieved precision rates 
of  90.0% for  detecting internal bubbles and 96.3% 
for identifying scattered yolk, with an HU estimation 
accuracy of 84%. This approach demonstrates the po-
tential of advanced imaging and analytical techniques 
in enhancing the destructive assessment of egg quality 
(Hamilton 1982; Mertens et al. 2011). Non-destructive 
methods for egg quality assessment allow one to eval-
uate internal characteristics without damaging the egg 
to assess the chicken egg fertility (Zhihui et al. 2015; 
Adegbenjo et al. 2020; Saifullah & Dreżewski 2022), 
egg grading system (De Ketelaere et al. 2004), shell egg 
quality and freshness evaluation (Liu et al. 2020; Lof-
fredi et al. 2021), raw egg freshness (Dutta et al. 2003; 
Akbarzadeh et al. 2019; Qi et al. 2020), internal qual-
ity (Mehdizadeh et al. 2014; Zhang et al. 2015), egg 
content determination in dry pasta (Fodor et al. 2011), 
detect abnormal chicken eggs (Kim et al. 2022), visu-
alisation of the gel springiness of preserved eggs (Li et 
al. 2021; Chen et al. 2023), yolk index (Sun et al. 2016), 
egg cracking (Li et al. 2012; Shi et al. 2022), storage 
the egg (Narushin et al. 2023), to calculate the egg vol-
ume and surface area (Narushin et al. 2020; Narushin 
et al. 2021), determine the S-ovalbumin content in egg 
storage (Fu et al. 2019; Yao et al. 2022; Yao et al. 2023), 
and to identify the gender of chicken eggs (Zhu et al. 
2021; Schreuder et al. 2024). The analysis of  the egg 
quality is a pivotal aspect of the food industry, ensur-
ing the  delivery of  high-standard products to  con-
sumers (Eddin et al. 2019). Traditional assessment 
methods are often subjective and labour-intensive, 
highlighting the  need for  more efficient and precise 
techniques (Okinda et al. 2020; Castro et al. 2023). 
This study introduces an advanced approach by uti-
lising image processing in conjunction with principal 
component analysis (PCA) (Uysal & Boyaci 2020), 
linear discriminant analysis (LDA) (Zhao et al. 2010), 
and k-nearest neighbour (KNN) (Rachmawanto et al. 
2020). These techniques facilitate the detailed meas-
urement of critical parameters, such as the albumen 
height, yolk height, and yolk diameter. By integrating 
PCA, LDA, and KNN, this research aims to establish 
a robust and objective framework for the egg quality 
analysis, significantly enhancing the accuracy and reli-
ability of the grading process.
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This work aims to develop a novel method for the 
egg quality assessment based on advanced machine 
vision techniques. PCA, LDA, and KNN were em-
ployed to extract and analyse key egg quality fea-
tures, including the  albumen height, yolk height, 
and yolk diameter. The relationship between these 
parameters and the  egg quality, measured by  the 
Haugh unit (HU), was assessed. This integrated ap-
proach offers a precise model for egg grading, with 
potential applications in enhancing the food qual-
ity control analysis.

MATERIAL AND METHODS

Preparation of the samples
In this study, two hundred fresh, intact egg sam-

ples were purchased from a store in Karaj, Iran, and 
kept in a laboratory at 26 ± 2 °C, out of the refriger-
ator. The egg samples were divided into five groups 
of forty eggs. The testing period spanned 20 days, 
with evaluations performed at  four-day intervals 
(Sheydaee & Bazyar 2021). A  box was  simulated 
in  3D using SolidWorks software (version 2018) 
and constructed from wood to minimise any envi-
ronmental noise effects (Figure 1). The box dimen-
sions were 60 × 60 × 50 cm, and it included a light 
box measuring 15 × 15 × 20 cm, containing a 7-W 
surface-mount device (SMD) bulb. To ensure uni-
form light orientation for the morphological analy-
sis, a  dark environment was  designed in  the box 
(Stinco et al. 2013; Yu et al. 2013). 

An HTC One X9 smartphone was  used to  ac-
quire the sRGB images within an  imaging system 
that included a digital camera, an illumination box, 
and a  computer. The  phone camera, with a  reso-
lution of  4 160 × 2 368 pixels and a  focal length 
of 27 mm, was fixed approximately 200 mm hori-
zontally from the egg centre. Data were transferred 
to a Lenovo laptop (Windows 10 Enterprise, Intel 

Core i5, NVIDIA GeForce GT740M, 4GB RAM) 
via a  USB for  image processing (Figure 1) (Shey-
daee & Bazyar 2021).

Egg Weight
The nutrient content of  eggs is influenced 

by multiple factors, with the weight of the egg be-
ing a  primary determinant. These factors include 
the heredity, breed, strain, age of the hen, body size, 
feed and water consumption, ambient temperature, 
and the presence of diseases (Şekeroglu & Altuntaş 
2009). The egg weight stands out as a crucial indica-
tor of an egg’s quality. To evaluate this, samples are 
weighed using an electronic balance scale, specifi-
cally a Jadever scale model, which offers a precision 
of 0.01 g. This level of accuracy ensures that even 
slight variations in egg weight are detected, provid-
ing reliable data for assessing the egg quality.

Images pre-processing and data preparation
Images captured by  a  smartphone camera were 

stored in.jpg format  and processed using MAT-
LAB® (version 2022b). The  processing involved 
an algorithm designed to identify the height of the 
albumin in the egg, consisting of two main steps:

(i) Image Pre-processing: This step involved 
evaluating the best methods for filtering and seg-
mentation to reduce the noise and enhance the im-
age quality during the test period. The goal was to 
modify any noise present in  the image and to ex-
tract the necessary information about the eggs.

(ii) Image Analysis: This step focused on analys-
ing the light pattern within the image to extract fea-
tures from the selected pixels.

The initial step of  pre-processing involved ex-
tracting useful information from the  RGB image 
to  separate the  important regions from the  basic 
image. This important region is known as  the re-
gion of interest (ROI). One of the important steps 
in  pre-processing images for  the albumin height 

Figure 1. Illustrates the  egg 
quality assessment system, 
which includes the  following 
components: (A)  a  light box, 
(B) a smartphone, (C) a laptop 
and (D) broken egg on a surface(A) (B) (C)

(D)
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detection is the  application of  low-pass filter op-
erations (Figure 2A). This technique is instrumen-
tal in  exploring significant relationships between 
the  spatial and frequency domains of  the images 
(Davies 2012). In this study, Gaussian and median 
smooth filtering were employed to eliminate signal 
components with high spatial frequencies. These 
filters effectively reduce the  noise and enhance 
the image quality, facilitating a more accurate anal-
ysis of the albumin height in the eggs. In our meth-
od, a binary process is employed to identify objects 
within a  white sample set against a  black back-
ground. This is achieved using the Otsu threshold-
ing method (Ye et al. 2001), which automatically 
calculates a threshold for a grayscale image. By em-
ploying the Ibinary function (Equation 1), this meth-
od minimises the  interclass variance of  black and 
white pixels to obtain a binary image. This binary 
image is crucial for  accurately distinguishing and 
analysing the objects within the sample.

(1)

where: Ibinary – the binary image; Iimage – the intensity of pixel 
of grayscale image; Totsu – the limit of Otsu threshold; Tyolk 
– limit for red channel; Iyolk –the pixels including yellow 
colour; Ialbumin – the pixels including white colour

In this research, the height of the albumin was deter-
mined using morphological operations based on image 
processing functions to segment the yolk and albumin 
areas in the image. To distinguish the egg yolk, the pro-

cessing method focused on the red channel (:,:,1) of the 
RGB colour image. This approach followed the  Tyolk 
method for yolk identification (Equation 2), ensuring 
the  accurate segmentation and measurement of  the 
yolk and albumin regions (Figure 2B).

(2)

where: Iyolk –the pixels including yellow colour; Iimage – 
the intensity of pixel of grayscale image; Tyolk – limit for red 
channel

At  this stage, the  albumin image (Ialbumin) is cal-
culated by  subtracting the  yolk image (Iyolk) from 
the binary image (Ibinary), as described in Equation 3. 
This subtraction operation, applied to  the images 
of the same size, is used to extract the area of inter-
est, specifically isolating the  albumin region from 
the rest of the image (Figure 2C).

Ialbumin= Ibinary – Iyolk : [w | w  Ibinary, w  Iyolk]    (3)

where: Ialbumin – the pixels including white colour; Ibinary – 
the binary image; Iyolk –the pixels including yellow colour; 
w – proposed pixels extracted from images

Calibration is essential to  validate the  extract-
ed features in  our image processing method. 
The  region of  interest (ROI) in  the image meas-
ured 60 mm (943.31 pixels) in width and 220 mm 
(3 493.41 pixels) in  length. This method allows 
the pixel count of the image to be accurately scaled 
to  millimetre units. The  discrepancy between 
the actual millimetre size and the  image process-
ing results is less than 0.32 mm, ensuring high ac-
curacy in the measurement and validation process. 
The network algorithm presented in this research 
was implemented in Python software (version 3.6) 
using Keras library on TensorFlow platform to per-
form all the processing and classification processes 
of the egg images.

Haugh Unit  
According to  the Haugh unit (Brant 1951), eggs 

are categorised into three quality grades based on 
their firmness: grade AA: firm, top quality (Haugh 
unit ≥ 72); grade A: reasonably firm, lower quality 
(Haugh unit 60–71); grade B: weak, deteriorated 
quality (Haugh unit < 60). 

The Haugh unit score is calculated using 
the  weight of  the egg and the  height of  the albu-

(A)

(B)

(C)

Figure 2. The process of egg images
(A) original image; (B) yolk separation; (C) albumin separation

( )

0
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min for each individual egg, based on the formula 
(Equation 4) established by Haugh (1937):

HU = 100 log10 (H - 1.7 W0.37 + 7.6)                       (4)

where: HU – the observed Haugh unit; H – the height 
of the albumin; W – the weight of the egg (Haugh 1937) 

This formula provides a  quantitative measure 
to assess the quality of eggs.

RESULTS AND DISCUSSION

The results from the image processing analysis of Iyolk 
and Ialbumin images, reveal a decline in egg quality over 
time-based on the  albumin height and Haugh unit 
measurements. Initially, on the first and fourth days, 
the eggs maintained a high Haugh unit, indicating they 
were intact and of  AA-grade quality. By  the eighth 
and twelfth days, some eggs had dropped to grade A. 
By the sixteenth day, with the mean Haugh unit falling 

below 72, the eggs were downgraded to either grade 
A or B, necessitating further quality assessment to en-
sure their suitability for consumption (Figure 3A). 

Based on the analysed images, six distinct features 
were extracted from the  dataset, offering compre-
hensive insights into the  characteristics and quality 
of the eggs. These features include egg weight, which 
measures the overall mass of the egg; albumin height, 
indicating the height of the egg white (albumin); and 
yolk height, which denotes the height of the egg yolk. 
Additionally, the yolk diameter is measured to under-
stand the size of the yolk, while the yolk index, a ratio 
of  the yolk height to  yolk diameter, provides insight 
into the yolk’s quality and firmness. Collectively, these 
features enable a detailed analysis of the egg quality, es-
sential for meeting consumer standards and optimis-
ing industrial processes. The analysis of the obtained 
data reveals three distinct classes observed over con-
secutive days, distinguished by variations in the height 
of the albumin and the ratio of the yolk height to the 
yolk diameter. These classes indicate consistent pat-
terns and trends in the egg quality metrics over time. 

(A) (B)

Figure 3. Performance of various classifiers in grading 
egg quality
(A) haugh unit; (B) albumin height; (C) albumin height vs 
yolk height

(C)
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The  height of  the albumin is an  important indicator 
of egg freshness, with higher values generally signify-
ing fresher eggs (Figure 3B). Meanwhile, the ratio of the 
yolk height to  the albumin height, provides insights 
into the egg quality (Figure 3C). By categorising the six 
features into these three classes, it becomes possible 
to track and predict changes in the egg quality, aiding 
producers in maintaining high standards and optimis-
ing storage and handling processes to ensure the deliv-
ery of fresh, high-quality egg production.

Principal component analysis. Principal Com-
ponent Analysis (PCA) is a  powerful dimensional-
ity reduction technique widely used in  data analysis 
and machine learning (Hasan & Abdulazeez 2021). 
By  transforming high-dimensional data into a  lower-
dimensional space, PCA can reveal patterns and sim-
plify the analysis of complex datasets (Ray et al. 2021). 
PCA transforms the  original features into a  new set 
of  orthogonal features known as  principal compo-
nents (Wold et al. 1987). These components are linear 
combinations of  the original features, ordered by  the 
amount of variance they explain in the data (Demšar et 
al. 2013). By focusing on the top principal components, 
we can capture the most significant patterns in the data 
while reducing the  complexity (Aschard et al. 2014). 
Our dataset consists of six features and one target vari-
able. The features are numerical variables that describe 
various aspects of  the data, while the  target variable 
represents different classes or categories. For our data-

set, we performed a PCA and extracted five principal 
components. This number of components was chosen 
to capture most of the variability in the data while keep-
ing the model interpretable and manageable. Principal 
Component Analysis (PCA) has proven to be a robust 
method for  retaining critical information in  datasets, 
as evidenced by its ability to explain 90.18% of the to-
tal variation with just five components. Breaking this 
down further, the first principal component (PC1) ac-
counts for 27.0% of the variation, the second principal 
component (PC2) captures 30.0%, and the third prin-
cipal component (PC3) explains an  impressive 43.0% 
of the variation (Figure 4).

Additionally, there was clear separation between 
the  three egg qualities which can be marketed 
as  AA, A  and B, with one sample containing its 
quality situated in among the three groups.

Linear discriminant analysis. Linear discri-
minant analysis (LDA) is a powerful classification 
technique used to differentiate between categories 
based on multiple features (Xanthopoulos et al. 
2013). In  this study, LDA was  employed to  clas-
sify eggs into three quality categories: AA, A, and 
B. The classification was based on six essential fea-
tures: the egg weight, albumin height, yolk height, 
yolk diameter, yolk index, and Haugh unit (HU). 
The  LDA model demonstrated remarkable per-
formance, achieving 100% accuracy in  classifying 
the eggs into their respective categories. This per-

Figure 4. 3D scatter plot of the three principal 
components (PC1: 27%, PC2: 30%, and PC3: 
43%) with features and targets: AA (firm), 
A (reasonably firm), and B (weak)
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fect classification indicates that  the selected fea-
tures are highly effective in distinguishing between 
different quality grades of eggs, ensuring no mis-
classifications occurred. The  effectiveness of  the 
LDA model was further validated through a scatter 
plot (Figure 5). 

Additionally, the  analysis revealed a  clear separa-
tion between the  three egg quality categories AA, 
A, and B though one sample was positioned among 
these groups. This observation further reinforces 
the  capability of  linear discriminant analysis to  ef-
fectively distinguish between different egg grades, 
ensuring the precise classification across the varying 
quality levels.

K-nearest neighbour algorithm. The K-nearest 
neighbour (KNN) algorithm, a cornerstone in ma-
chine learning for  classification and regression 
tasks, operates on the  principle that  data points 

with similar features are likely to have similar out-
comes (Xie et al. 2024). Recently, this technique 
was  employed to  classify eggs based on six spe-
cific features: the egg weight, albumin height, yolk 
height, yolk diameter, yolk index, and Haugh unit. 

The KNN model achieved an  accuracy rate 
of  80%, demonstrating its effectiveness in  dis-
tinguishing between the  different egg categories. 
The  model’s performance is further evaluated 
through a confusion matrix for test data (Figure 6), 
which provides a  detailed breakdown of  correct 
and incorrect classifications, offering insights into 
the model’s accuracy and highlighting areas for po-
tential refinement.

Future work
In future research, the integration of deep learning 

techniques could significantly enhance the  accuracy 

Figure 5. Linear discriminant analysis 
(LDA) classifier for the egg quality - scat-
ter plot

Figure 6. Confusion matrix depicting 
the K-nearest neighbour (KNN) algorithm 
performance in the egg quality classification
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and efficiency of egg quality classification. Deep learn-
ing models, such as  convolutional neural networks 
(CNNs), offer the  ability to  automatically extract 
complex features from high-dimensional image data, 
potentially improving the  detection of  subtle qual-
ity variations that  traditional methods might miss. 
Implementing a  deep learning-based classifier could 
streamline the process, allowing for a more nuanced 
analysis of egg characteristics beyond the capabilities 
of conventional image processing methods. Addition-
ally, exploring the use of transfer learning, where pre-
trained models are adapted for  specific egg quality 
tasks, could accelerate the  development process and 
yield high-performing models with minimal train-
ing data. By  combining deep learning with existing 
methodologies like SVM, LDA, and KNN, future work 
could deliver a more robust and comprehensive system 
for egg quality assessment, further advancing the food 
industry’s ability to ensure product excellence.

CONCLUSION

In conclusion, this study advances the  field of  egg 
quality assessment by  integrating sophisticated ma-
chine vision techniques with statistical analyses, such 
as  PCA, LDA, and KNN. By  employing these meth-
ods, the research effectively enhances the accuracy and 
reliability of  egg grading systems, which are crucial 
for  maintaining high standards in  the food industry. 
The innovative approach allows for the precise meas-
urement of key egg quality parameters, such as the al-
bumen height and yolk characteristics, and provides 
a robust framework for the continuous monitoring and 
classification. Notably, the LDA model demonstrated 
exceptional performance, achieving a  perfect accu-
racy rate of 100%, thereby ensuring flawless classifica-
tion of egg quality grades. This high level of accuracy 
underscores the effectiveness of  the selected features 
and the robustness of the LDA model. The integration 
of these advanced techniques not only improves the ef-
ficiency of quality control processes, but also ensures 
that  consumers receive eggs that  consistently meet 
safety and nutritional standards, thus contributing 
to overall public health and industry competitiveness.
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