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Abstract

Brychta J., Janeček M. (2017): Evaluation of discrepancies in spatial distribution of rainfall erosivity in the Czech Re-
public caused by different approaches using GIS and geostatistical tools. Soil & Water Res., 12: 117−127.

The study presents all approaches of rainfall erosivity factor (R) computation and estimation used in the Czech 
Republic (CR). A lot of distortions stem from the difference in erosive rainfall criteria, time period, tipping rain 
gauges errors, low temporal resolution of rainfall data, the type of interpolation method, and inappropriate 
covariates. Differences in resulting R values and their spatial distribution caused by the described approaches 
were analyzed using the geostatistical method of Empirical Bayesian Kriging and the tools of the geographic 
information system (GIS). Similarity with the highest temporal resolution approach using 1-min rainfall data was 
analyzed. Different types of covariates were tested for incorporation to the cokriging method. Only longitude 
exhibits high correlation with R and can be recommended for the CR conditions. By incorporating covariates 
such as elevation, with no or weak correlation with R, the results can be distorted even by 81%. Because of sig-
nificant yearly variation of R factor values and not clearly confirmed methodology of R values calculation and 
their estimation at unmeasured places we recommend the R factor for agricultural land in the Czech Republic 
R = 40 MJ/ha·cm/h +/– 10% depends on geographic location.

Keywords: covariate; geostatistics; R factor; rainfall intensity; rainfall total; USLE/RUSLE-GIS method

The Universal Soil Loss Equation (USLE) (Wisch-
meier & Smith 1978) or its updated version, the 
Revised Universal Soil Loss Equation (RUSLE) (Re-
nard et al. 1997), are worldwide used methods for 
calculating average annual soil loss. Nowadays these 
methods are used mainly with the help of the geo-
graphic information system (GIS) tools (the USLE/
RUSLE-GIS method). The integration with GIS in 
inappropriate way caused a lot of simplifications 
resulting in distortions and discrepancies. The rain-
fall erosivity effect is expressed by R factor (R) in 
USLE/RUSLE. Many authors have developed dif-
ferent methods due to the lack of optimal data for 
calculation according to the original methodology. 
Currently there exist two basic approaches for R cal-
culation – based on low temporal resolution data 

(average annual, growing period, monthly or daily 
totals) and high temporal resolution data (1–30-min 
totals). The differences and used parameters of com-
putations for the CR are summarized in Table 1. Most 
authors used the methodology by Schwertmann 
et al. (1987) and Pretl in Toman et al. (1993) due 
to the lack of optimal data. In the case of high tem-
poral resolution method there is a specific problem 
of erosive rainfall criteria. The authors coincidently 
calculate with the minimum rainfall total of more or 
less 12.5 mm. The main difference is in the minimum 
intensity and precondition OR/AND which deter-
mines if rainfall total and intensity criteria have to 
be fulfilled simultaneously or not. The objective 
of the present study is to summarize and compare 
all approaches used for the CR to figure out the dif-
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ferences in R values and their spatial distribution. 
Analyses were focused on erosive rainfall criteria, 
temporal resolution of rainfall data, interpolation 
methods, and distortions caused by covariates. This 
research should help select an appropriate R map or 
the methodology of R map creation in the field of 
water erosion risk assessment.

R factor estimation. First R maps were created 
using a various number of rain gauges stations (RS), 
time periods, and erosive rainfall criteria (Table 1) 
with similar average R close to 20 MJ/ha·cm/h (fur-
ther in the text without units) ( Janeček et al. 1992; 
Sokolová 1992; Toman et al. 1993; Švehla & 
Skořepa 1995). Van der Knijff et al. (2000) esti-
mated R according to Schwertmann et al. (1987) 
in the R-factor map of Europe within a range 60–70 
for the CR. Krása (2004) tested a method according 
to Rogler and Schwertmann (1981) for the CR 
with resulting average R = 61 (Figure 1b). 

R factor calculation using high temporal resolu-
tion data. Janeček et al. (2006) using 1-min rainfall 
data from 13 ombrographs (OS) for a 40-year period 
detailedly analyzed the R calculation by the original 
methodology of Wischmeier and Smith (1978). Rain-
falls with totals > ≥12.5 mm (condition A) and intensity 
> 6 mm/15 min (condition B) were considered. If condi-
tions A or B (precondition OR) were fulfilled, there were 
8.3 erosive rainfalls per station on average resulting in 
average R = 65.8. If conditions A and B (precondition 
AND) were fulfilled, there were 2.3 erosive rainfalls 
per station on average with average R = 44.9. Based 
on a 9-year experimental runoff plots monitoring the 
precondition AND was confirmed and resulting average 
R = 45 was recommended (Janeček et al. 2006). The 
R map by Dostál et al. (2006) was created according 
to Wischmeier and Smith (1978) based on data of 
37 RS for the period 2000–2005 with different erosive 
rainfall criteria – total > 12.5 mm OR intensity > 

Table 1. Outline of criteria used for all created rainfall erosivity factor (R) maps for the Czech Republic

Author Period RS Method
Erosive rainfall criteria

R Ø R 
total (mm) intensity

Pretl in Toman et al. 
(1993)

long-term 9 W > 12.5 > 6.25 mm/15 min 30–72 –

long-term – S (1) P 30–110* 50*

Toman et al. (1993) 20 years 25 W (2) > 10 > 20 mm/h 18–26 22

Sokolová (1992) 15–50 years 21 W (3) > 10 > 20 mm/h – 19

Janeček et al. (1992) 15–50 years 102 W > 10 > 20 mm/h 3–37 20

Janeček et al. (1992) 1952–1992 3 W (5) > 12.5 – – 20

Švehla and Skořepa (1995) long-term 95 S PS 35–90* 50*

Van der Knijff et al. (2000) 1989–1998 – S PS 60–70 –

Krása (2004) 1962–2001 87 S PS 35–80 61

Dostál et al. (2006) 2000–2005 37 W (5) > 12.5 > 24 mm/h 44–85 73

Janeček et al. (2006) 1961–2000 13 W (6) ≥ 12.5 > 6 mm/15 min – 45

Janeček et al. (2012b, 2013) 1971–2000 31 W (6) > 12.5 > 6.25 mm/15 min 18–113 41

Rožnovský in Krása et al. 
(2014) 2003–2012 106 W (6) ≥ 12.5 ≥ 0.4 mm/min 37–110 69

Hanel in Krása et al. 
(2014) 1989–2003 96 W (5) > 12.5 > 6 mm/10 min 35–150 64

Panagos et al. (2015) 1961–1999 35 W (5) > 12.7 > 12.7 mm/30 min 22–109 52

Hanel et al. (2016) 1989–2003 96 W (5) > 12.7 > 8.5 mm/20 min 32–152 64

Rožnovský (2017)** 1971–2014 > 245** W** > 12.5 > 6.25 mm/15 min ** **

RS – No. of rain gauges stations; W – Wischmeier and Smith (1978); S – Schwertmann et al. (1987); P – average annual 
rainfall total; PS – average rainfall total for the period May 1 to October 31; (1) – north and north-east Bohemian region; 
(2) – south Moravian region; (3) – south Bohemian region; (4) – central Bohemian region; (5) – precondition OR; (6) – pre-
condition AND; *approximate estimation from analogue isolines map; **not published ongoing research of the Czech Hydro-
meteorological Institute; long-term – more than 20 years
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24 mm/h (Figure1c), and average R = 72.6. The map was 
created by linear interpolation and filtering methods 
in GIS for reducing extreme values. Janeček et al. 
(2012a) performed detailed analyses of erosive rainfall 
criteria based on experimental runoff plots monitor-
ing with bare soil and various crops with different 
agrotechnics in the period 2001–2009. He found out 
that significant soil loss events were caused by rainfall 
total > 10 mm AND intensity > 6 mm/15 min. The 
difference between the 15-min and 30-min intensity 
effect was minimal. The dependence between R and 
soil loss was mainly G = 0.35 R and with consideration 
of all USLE factors G = 0.5 R. These results were in-
fluenced by soil moisture content which also caused 
soil losses by rainfalls which did not fulfil the erosive 
rainfall criteria. That is why the mentioned criteria 
set by Wischmeier and Smith (1978) do not cor-
respond to R = 0 but approximately R = 4. Janeček 
et al. (2012b, 2013) created the R map using 31 OS 
for the period 1971–2000 and precondition AND 
(Figure 1d). According to this map average R = 40 
was recommended for agricultural areas (without 
mountainous border areas).

R factor calculation using tipping rain gauges. 
Hanel (2013) in Krása et al. (2014) used 96 rain 
gauges stations (RS) for the period 1989–2003 with 

resulting average R = 64 (Figure 1e) (Krása et al. 2014). 
Rožnovský et al. (2013) in Krása et al. (2014) used 
106 RS for the period 2003–2012 with resulting average 
R = 69 (Figure 1f ) (Krása et al. 2014) (Table 1). Hanel 
et al. (2016) used 106 RS for the period 1989–2003 
with resulting average R = 64. These time series con-
tain measurements of different types of RS – floating 
rain gauges or ombrographs OS (used until 2000) and 
tipping (used since 1997). There were found errors 
in measurements using tipping rain gauges during 
intensive rainfalls based on the research of the Czech 
Hydrometeorological Institute (CHMI). This error af-
fected resulting R computed after the year 2000 and it is 
probably a major cause of excessively increased R values. 
Panagos et al. (2015) created a revised R map for Eu-
rope using temporal resolutions 5–60 min (normalized 
to 30-min using linear regression functions) and time 
series 5–40 years (17.1 years on average). For the CR, 
data from 35 OS for the period 1961–1999 were used 
and resulting average R = 52.4. The R map currently 
created by the CHMI is based on more than 200 RS 
for the period 1971–2014 and a correction coefficient 
for tipping RS data.

Geostatistical approach for R values interpo-
lation. Among erosive rainfall criteria, precondi-
tions (OR/AND) and R calculation approach is the 

Figure 1. Overview of all rainfall erosivity factor (R) maps created for the Czech Republic

(a) Janeček et al. (1992)
(b) Krása (2004)
(c) Dostál et al. (2006)
(d) Janeček et al. (2012b, 2013)
(e) Hanel (2013) in Krása et al. (2014)
(f ) Rožnovský et al. (2013) in Krása et al. (2014)
(g) Panagos et al. (2015)

(a) 

(g) 

(b) (c) 

(d) (e) (f ) 
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most important spatial prediction of R at unmeasured 
places based on interpolation techniques. Many stud-
ies confirmed the advantages of kriging or cokriging 
methods (Philips et al. 1992; Goovarets 1999, 2000; 
Moral 2010; Hanel et al. 2016). Kriging compared 
with deterministic models uses to calculate weights to 
determine the projected points, not only the distance 
between measured and predicted points, but also the 
spatial arrangement of measured points around the 
predicted point. Spatial autocorrelation of measured 
points has to be determined to create a semivariogram. 
Different covariates were used, mainly elevation data, 
longitude, latitude, and annual or growing period to-
tals. However there must exist a spatial autocorrela-
tion in the used dataset and correlation with the used 
covariates, otherwise the cokriging method cannot 
be satisfactorily applied. Therefore further objective 
of this study is to verify covariates most frequently 
used for the CR conditions. Goovarets (1999, 2000) 
presented three multivariate geostatistical algorithms 
for incorporating a digital elevation model into the 
spatial prediction of rainfall totals and rainfall erosivity. 
In most situations a cross validation process indicated 
smaller prediction errors than the linear regression. 
The best results were obtained using cokriging with 
elevation data. Krása (2004) and Dostál et al. (2006) 
used linear interpolation (Figure 1b, c). Janeček et al. 
(2013) used the cokriging method with incorporating 
elevation and daily rainfall totals ≥ 12.5 mm from 257 RS 
with truncated arithmetic mean (without 2 maximal 
and minimal values) (Figure 1d). Panagos et al. (2015) 
used Gaussian Process Regression and climatic data as 
covariates (rainfall totals, seasonal total, totals of driest/
wettest months, average temperature), elevation, lati-
tude, and longitude (Figure 1e). Detailed methodology 
by Rožnovský et al. (2013) in Krása et al. (2014) was 
not published. Hanel et al. (2016) used generalized 
least-square model which reduced the uncertanity due 
to short record lenght. 

MATERIAL AND METHODS

Rainfall data of 71 stations for the period 1961–
1990 were collected for R factor calculation using 
low temporal resolution data method according to 
Pretl in Toman et al. (1993): 

R = 0.058P + 10.5 	  (1)

and Schwertmann et al. (1987):

R = 0.141 PS – 1.48 	  (2)

R = 0.083 P – 1.77 	  (3)

where:
PS	– average rainfall total for the period May 1 to Octo-

ber 31 (growing period total)
P	 – average annual rainfall total (mm)

Next the R based on high temporal resolution data 
method according to Dostál et al. (2006), Janeček 
et al. (2013), and Panagos et al. (2015) were collected 
for each used station. To avoid the distortions of dif-
ferent used interpolation methods and covariates, the 
Empirical Bayesian Kriging (EBK) was used (Figure 4). 
Compared with other kriging methods, the EBK uses 
a large number of semivariogram models. After es-
timating the semivariogram model from input data, 
new values are simulated at input data locations and 
other semivariogram models are estimated. For these 
semivariograms are calculated weights using Bayes’ 
rule, which shows how likely the observed data can be 
generated from the semivariogram (Pilz & SpÖck 2007). 
The EBK predicts more accurate standard errors than 
other kriging methods and allows accurate predictions 
of moderately nonstationary data (Krivoruchko & 
Gribov 2014). If the autocorrelation was not found, 
the Inverse Distance Weighting (IDW) method was 
used. Semivariogram models and interpolation pa-
rameters were chosen for best fitting to the empirical 
semivariogram with the help of results of the cross 
validation process. The resulting maps with cross vali-
dation process – regression function of predicted and 
measured values and QQ plot, are shown in Figure 4. 
Best fitting gave the K-Bessel function. These results 
were compared with the R map according to Janeček 
et al. (2012b, 2013) based on the highest temporal 
resolution (1-min) rainfall data for the same time pe-
riod interpolated using the EBK method (Figure 5). 
The R according to Janeček et al. (2012b, 2013) was 
calculated using equations (4), (5), (6):

R = E × i30/100 	  (4)

where:
R	 – rainfall erosivity factor (M/ha·cm/h)
E	 – total kinetic energy of rainfall (J/m2)
i30	– maximum 30-min intensity (cm/h)

The total kinetic energy of rainfall is:

 	  (5)

where:
Ei	 – kinetic energy of rainfall in the section i
n	 – number of section

E = ∑
n  

Ei
           i=1
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Ei = (206 + 87 logisi) × Hsi 	  (6)

where:
isi	 – intensity of rainfall in the section i (cm/h)
His	– rainfall total in the section i (cm)

For calculation we considered rainfalls with total 
> 12.5 mm AND intensity > 6.25 mm/15 min sepa-
rated from the next rainfall by at least 6 h or less if 
the section was considered as one erosive rainfall. 
The most often used covariates incorporated in 
the cokriging method (annual and growing period 
rainfall totals, elevation, longitude and latitude) 
were tested for the CR. The correlations were veri-
fied by regression analyses using linear, polynomial, 
exponential, logarithmic, and power functions. Best 
functions were chosen according to the coefficient 
of determination (r2). Absolute values of result-
ing correlation coefficients (r) were compared with 
critical values (rc) determined for the significance 
level of 5% to figure out significance of the correla-
tion. All created R maps were compared using map 
algebra in GIS environment to figure out differences 
in R spatial distributions caused by the mentioned 
different approaches. The tolerance limit was set at 

5 MJ per ha∙cm/h and for covariates verification at 
1 MJ per ha∙cm/h (in Figures 3, 5, and 6, the places 
where the limit was not exceeded are hatched). A new 
R map was created using regression analyses with 
growing period rainfall total and the EBK method 
(Figure 3). The R maps on Figure 6 were compiled 
by the cokriging method using longitude, latitude, 
and elevation as covariates to figure out how they 
can affect R spatial distribution. 

RESULTS AND DISCUSSION 

The objectives of the analyses were to find out the 
differences in R values and their spatial distribution:
(1) calculated by low and high temporal resolution 

data approaches, 
(2) calculated by high temporal resolution data using 

different erosive rainfall criteria – especially the 
minimal intensity and preconditions OR/AND, 

(3) interpolated by different methods – especially 
using different covariates as elevation data, lon-
gitude, latitude, P, and PS.

The mentioned covariates were tested for the CR 
conditions (Figure 2). There is no statistically sig-

Figure 2. Verification of the correlation between covariates and rainfall erosivity factor (R) for the Czech Republic:
(a) average annual rainfall total (P), (b) average rainfall total for the period May 1 to October 31 (PS), (c) elevation (Z), 
(d) correlation between Z and R calculated using PS, (e) longitude, (f ) latitude

y = 0.019x + 31.92
R2 = 0.095

(a) (b) (c) 

(d) (e) (f ) 

y = 0.065x + 18.02
R2 = 0.206

y = 0.000x + 44.83
R2 = 6E−06

y = −4.469x + 266.9
R2 = 0.070

y = 4.402x − 23.33
R2 = 0.499

y = 0.011x + 39.55
R2 = 0.307
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nificant correlation between R and P (r = 0.31 < 
rcritical) but the correlation exists with PS (r = 0.45 > 
rcritical). Even though the correlation with low tem-
poral resolution rainfall data is weak for the CR, it 
was confirmed by many authors for several other 
countries – Mikhailova et al. (1997) for Honduras, 
Torri et al. (2006) for Italy, Renard and Freimund 
(1994) for the USA, Hermando and Romana (2015) 
for Spain, Bonilla and Vidal (2011) for Chile, 
Lee and Heo (2011) for Korea, Schwertmann et 
al. (1987) for Bavaria. These authors used linear, 
power or polynomial regression function. Renard 
and Freimund (1994) stated that power function 
gave the highest coefficient of determination (r2). 
Bonila and Vidal (2011) recommended power func-
tion for locations with average annual precipitation 
< 850 mm and polynomial for > 850 mm. However 
the mentioned statement was not confirmed for the 
CR. The linear function best fits to rainfall totals 
< 850 mm (Figure 2a, b). 

The following linear function based on low tempo-
ral resolution data was newly derived for the R map 
creation: 

R = 0.065PS + 18.025 	  (7)

This map exhibits 70% similarity with the method-
ology of Janeček et al. (2012b, 2013) for a tolerance 
limit of 5 MJ/ha·cm/h (Figure 3) and 21% for 1 MJ/
ha·cm/h. Goovarts (2000) found high correlation 
with elevation data for the Portugal conditions with 
r2 = 0.75. This correlation was not confirmed for the 
CR but it highly increases if low temporal resolution 
data are used (Figure 2c, d). Panagos et al. (2015) 
used elevation, longitude, and latitude as covariates 
for the European R map based on 30-min temporal 
resolution rainfall data and precondition OR. Results 
of verifying this correlation for the CR using 1-min 
data and precondition AND (Figure 2e, f ) confirm a 
high correlation with longitude (r = 0.71) but with 

Figure 3. A new rainfall erosivity factor (R) map based on linear regression with growing period totals and the Empirical 
Bayesian Kriging (EBK) method
Janecek – methodology according to Janeček et al. (2012b), EBK Ps – R map based on linear regression function (7) 
and Empirical Bayesian Kriging (EBK) method

Table 2. Results of comparison of different approaches to rainfall erosivity factor (R) calculation and estimation in GIS

Method Data RS Period Range Ø SD RMSE RF PM SM (%)

Swertmann et al. (1987) P 71 1961–1990 37.1–97.3 52.6 9.5 11.7 0.42x + 31.63 141

Swetmnann et al. (1987) PS 71 1961–1990 41.2–98.3 55.5 8.5 9.8 0.5x + 29.1 341

Pretl in Toman et al. (1993) P 71 1961–1990 37.7–79.5 48.5 6.6 8.2 0.43x + 28.8 591

Janeček et al. (2012b, 2013) 1-min 30 1961–1990 30.7–58.9 44.4 6 6.9 0.54x + 21.58 1001

Janeček et al. (2012b, 2013) 1-min 30 1961–2000 29.4–64.9 46 8.5 8.4 0.51x + 22.36 1002

Dostál et al. (2006)* 1-min 37 2000-2005 38–136 74.2 11.7 25.7 0.03x + 77.14 32

Panagos et al. (2015) 30-min 29 1961–1999 32.7–71.3 51.1 8.2 7.2 0.42x + 28.68 542

EBK PS** PS 71 1961–2000 37.6–65.5 44.3 4 4.4 0.55x + 20.24 701

RS – No. of rain gauges stations; P – average annual rainfall total; PS – average rainfall total for the period May 1 to October 31; 
SD – standard deviation; RMSE – root mean square error; RF PM – regression function of predicted and measured values; 
SM – similarity with Janeček et al. (2012b, 2013);*Inverse Distance Weighting (IDW) method; **R map based on linear re-
gression function (Eq. (7)) and Empirical Bayesian Kriging (EBK) method; 1comparison with R data 1961–1990; 21961–2000

65.5

37.6

11.8 (< Janecek)
Janecek = EBK PS
14.1 (< EBK PS)
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Figure 4. Rainfall erosivity factor (R) values interpolation using the Empirical Bayesian Kriging (EBK) method

R calculated according to:
(a) Pretl in Toman et al. (1993)
(b) Swertmann et al. (1987) 
       − growing period totals
(c) Janeček et al. (2012b, 2013)
(d) Paganos et al. (2015)
(e) Dostál et al. (2006)

(a) 

(b) 

(c) 

(d) 

(e) 

79.6

37.7

98.3

41.2

64.9

29.4

71.3

32.7

136

38

Distance (Degree) ∙ h

Distance (Degree) ∙ h

Distance (Degree) ∙ h

Distance (Degree) ∙ h

Predicted ∙ 10−1

Predicted ∙ 10−1

Predicted ∙ 10−1

Predicted ∙ 10−1

Predicted ∙ 10−1

Measured ∙ 10−1

Measured ∙ 10−1

Measured ∙ 10−1

Measured ∙ 10−1

Measured ∙ 10−1

Standardized Error

Standardized Error

Standardized Error

Standardized Error

Normal Value

Normal Value

Normal Value

Normal Value
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latitude the correlation was not statistically significant 
(|r| = 0.26 < rcritical). To avoid distortion by unsatis-
factorily confirmed covariates, the EBK method can 
be used. By this method were interpolated R values 
calculated according to Pretl in Toman et al. (1993), 
Schwertman et al. (1987), Dostál et al. (2006), 
Janeček et al. (2013), and Panagos et al. (2015) 
(Figure 4). The R values by Panagos et al. (2015) 

were considered with distortions caused by covari-
ates. A spatial autocorrelation was found for all cases 
among R data set by Dostál et al. (2006) therefore 
the IDW method was used in this case (Figure 4e). 
The semivariogram model K-Bessel best fitted to 
empirical semivariograms and gave the smallest 
root-mean-square error (RMSE). Cross validation 
results are shown in Figure 4 and Table 2. All rasters 

Table 3. Distortions of rainfall erosivity factor (R) spatial distribution caused by covariates

Covariate Range Ø SD RMSE RF PM
% affecting R map

tolerance R = 5 tolerance R = 1

X 27.2–67.3 46.2 8.9 8.3 0.6x + 19.8 0 28

Y 28.6–66.9 46.3 8 8.9 0.46x + 26.96 18 61

Z 19.2–86.1 45.5 9.9 12 0.4x + 27.7 39 81

YZP 28.4–68.7 46 9.1 8.7 0.6x + 20.1 14 60

X – longitude; Y – latitude; Z – elevation; P – average annual rainfall total; SD – standard deviation; RMSE – root mean square 
error; RF PM – regression function of predicted and measured values

Figure 5. Differences in the rainfall erosivity factor (R) spatial distribution caused by different approaches
Schwertmann P/PS – methodology according to Schwertmann et al. (1987); Sch. P – using average annual totals;  
Sch. PS – using average growing period totals; Pretl – according to Pretl in Toman et al. (1993); Janecek – according to 
Janeček et al. (2012a, b, c, 2013); Panagos – according to Panagos et al. (2015); Dostal – according to Dostál et al. (2006)

(a) Schwertmann P/PS

      Sch. P: annual totals
      Sch. PS: growing period totals
(b) Pretl−Schwertmann P
(c) Pretl−Schwertmann PS

(d) Janecek−Schwertmann PS

(e) Janecek−Schwertmann P
(f ) Janecek−Pretl
(g) Janecek−Panagos
(h) Janecek−Dostal

(a) 

(g) 

(b) (c) 

(d) (e) (f ) 

17.3 (< Sch. P)
P = PS

9.4 (< Sch. PS)

0.6 (< Pretl)
Pretl = Sch. P
17.7 (< Sch. P)

0.9 (< Pretl)
Pretl = Sch. PS

21.3 (< Sch. PS)

9.5 (< Janecek)
Janecek = Pretl
26.9 (< Pretl)

7.7 (< Janecek)
Janecek = Sch. P
21.3 (< Sch. P)

4.7 (< Janecek)
Janecek = Sch. PS

36.1 (< Sch. PS)

8.4 (< Janecek)
Janecek = Panagos
31.9 (< Panagos)

(h) 
13.5 (< Janecek)
Janecek = Dostal
70.4 (< Dostal)
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were compared using the tolerance limit 5 MJ/ha·cm/h 
to figure out differences in spatial distribution of R 
calculated using different erosive rainfall criteria and 
temporal resolution of rainfall data. The similarity with 
1-min temporal resolution data approach according 
to the methodology by Janeček et al. (2012b, 2013) 
was tested (Figure 5, Table 2). An interesting finding 
is a very low similarity (14 and 34%) of R maps based 
on the methodology by Schwertmann et al. (1987) 
derived for the neighbouring territory of Bavaria. The 
best similarity (59%) gave the R based on the meth-
odology by Pretl in Toman et al. (1993), even better 
than by Panagos et al. (2015) (54%). If the tolerance 
limit 1 MJ/ha·cm/h was used, the approach by Pana-
gos et al. (2015) gave very low similarity (13.2%). The 
main reason is incorporating the covariates with no or 
very low correlation with R for the CR and using the 
precondition OR. Differences caused by precondition 
OR were confirmed by Janeček et al. (2006, 2012a). 
How covariates can affect R spatial distribution is 
demonstrated in Table 3 and Figure 6. Incorporating 
the elevation as covariate with no correlation with R 

can affect the resulting map (spatial distribution) by 
81% and the longitude with high correlation by 28%. 
The lowest similarity (3%) gave R values by Dostál 
et al. (2006). The main reasons are using tipping rain 
gauges records with errors caused by intensive rain-
falls, intensity criteria set at > 24 mm/h, and different 
time period – only 6 years which exhibits no spatial 
autocorrelation in resulting R values.

CONCLUSION

In evaluating the rainfall erosivity factor R, many 
distortions are caused by using precondition OR, 
different erosive rainfall criteria, short time period, 
tipping rain gauges errors, low temporal resolution 
rainfall data, the type of interpolation method, and 
inappropriate covariates. This study presents all 
approaches of R computation and estimation used 
in the CR. The differences in R spatial distribution 
caused by the used approaches were analyzed us-
ing the EBK method and GIS. A similarity with the 
highest temporal resolution data approach based on 

Figure 6. Distortions of the rainfall erosivity factor (R) spatial distribution caused by covariates
(a) longitude, (b) latitude, (c) elevation
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1-min rainfall data, precondition AND with rainfall 
intensity criteria > 6.25 mm/15 min were analyzed. 
Using low temporal resolution data approach (growing 
period rainfall totals) a 21% similarity was reached. 
That is why this approach cannot be recommended 
for the CR conditions. The approach using too short 
time periods with erosive rainfall intensity criteria > 
24 mm/h and tipping rain gauges record exhibiting 
no autocorrelation in resulting R values dataset and 
kriging method cannot be used for interpolation. 
This approach exhibits almost no similarity but it 
was calculated for a different time period and af-
fected by tipping rain gauges errors. The approach 
using 30-min data and precondition OR with a lot 
of incorporated covariates reached maximally 13.2% 
similarity. Results of verifying distortions by covariates 
for the CR conditions show a statistically significant 
correlation only for longitude and growing period 
totals. Incorporation of elevation, latitude and their 
combination with annual totals as covariates can affect 
the resulting R map (spatial distribution) by 60–81%. 
Covariates correlation depends on local conditions 
in individual countries and also on erosive rainfall 
criteria used for the R calculation. Therefore only 
covariates which exhibit high correlation with R can 
be recommended for incorporation in the cokriging 
method. Because of significant yearly variation of 
R factor values and not clearly confirmed methodol-
ogy of R values calculation and their estimation at 
unmeasured places we recommend the R factor for 
agricultural land in the Czech Republic R = 40 MJ/
ha·cm/h +/– 10% by geographic location in accord-
ance with results by Janeček (2012b, 2013) based on 
processing 1-min temporal resolution rainfall data for 
the period 1971–2000 and 31 OS. 
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