

Assessment of multivariate associations and spatial variability of forest soil properties and their stand factors in the Czech Republic

VINCENT YAW OPPONG SARKODIE^{1*}, RADIM VAŠÁT¹, KAREL NĚMEČEK¹, VÍT ŠRÁMEK², VĚRA FADRHOVÁ², KATEŘINA NEUDERTOVÁ HELLEBRANDOVÁ², LUBOŠ BORŮVKÁ¹

¹Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic

²Forestry and Game Management Research Institute, Strnady, Jíloviště, Czech Republic

*Corresponding author: oppong_sarkodie@af.czu.cz

Citation: Oppong Sarkodie V.Y., Vašát R., Němeček K., Šrámek V., Fadrhonsová V., Neudertová Hellebrandová K., Borůvka L. (2025): Assessment of multivariate associations and spatial variability of forest soil properties and their stand factors in the Czech Republic. *Soil & Water Res.*, 20: 32–42.

Abstract: Knowing the relationship between forest soil properties and their stand conditions is relevant for the sustainable exploitation and management of forest soils. This study examines the influence of stand environmental factors on soil properties within forest environments. We further assessed the spatial variability of these soil properties and their controlling factors. A harmonised soil database on the entire forest areas of the Czech Republic was considered; however, only 851 sampling points with complete data on soil properties was used out of the more than 8 thousand sampling points in the database. The topsoil mineral layer of 0–30 cm was analysed. Principal component analysis was used to determine the relationships between the forest soil properties and their stand controlling factors. The nugget ratios for the semivariograms and cross-variograms were used to evaluate the spatial dependence of soil properties, and their relevant controlling factors. Forest types influence soil reaction and the availability of cations within the topsoils. Phosphorus is influenced by aluminium and cation exchange capacity. There are higher concentrations of total phosphorus and aluminium under broadleaved forest.

Keywords: environmental factors; forest soils; geostatistics; principal component analysis; spatial variability

Forest soils play an important role in global climate change mitigation efforts with their carbon sequestration (Gorte 2009; Baritz et al. 2010; Burke et al. 2016). Temperate forests are degraded by anthropogenic activities such as acid deposition, fires, and organic matter removal (Page-Dumroese et al. 2021). The sustainable exploitation and management of forest soils will support the global climate change efforts and contribute to supporting forests to achieve their ecosystem functions such as providing timber. The conditions and nature of the forest environment

impact soils and their properties (Binkley & Fisher 2013). Several studies have found environmental conditions of forests to influence their soils. Zhang et al. (2016) found that stand characteristics impacted the forest floor and root biomass. An established relationship between carbon stocks and site conditions, including climate and soil type, was observed for European forest soils (Baritz et al. 2010).

Forest soils of Czechia have undergone atmospheric acid pollution from sulphur and nitrogen compounds discharged from anthropogenic activities before

Supported by the Ministry of Agriculture of the Czech Republic, Project No. QK22020217

© The authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).

the end of the 20th century (Krupová et al. 2018; Borůvka et al. 2020). The soils in these forests have experienced nutrient imbalance (Berger et al. 2016; Novotný et al. 2018). To better manage forest soils, it will be important to have an understanding of the relationships between these forest soils and their effects on environmental factors (Zhang et al. 2016).

Gruba and Mulder (2015) for example observed an influence of forest trees on the cation exchange capacity of forest soils. Soil depth and soil class were observed to have affected the soil organic carbon stability of French soils (Soucémarianadin et al., 2018). High contents of soil organic carbon stocks in organic and mineral layers were found to be spatially concentrated in high-altitude Czech forests (Oppong Sarkodie et al. 2023). Weathering of parent minerals influences the base cation contents of soils (Nieman & Johnson 2021).

We hypothesise in this study that there exists a relationship between forest soil properties and their environmental covariates. The objective of this study is to determine the influence of stand environmental factors on soil properties within forest environments. We further assessed the spatial variability of the soil properties, and their controlling factors within the study area.

MATERIAL AND METHODS

Area description. The study area (Figure 1) includes all the forest areas of the Czech Republic, which lies within the temperate broad-leaved deciduous forest zone of central Europe. The altitudinal range for the study area is from 115 to 1 602 m a.s.l. The area has a temperate oceanic through temperate continental climate (Rivas-Martínez et al. 2004). The continental character of climate increases from the west to the east, and while moving from the high mountain altitudes downwards to lowland areas. Mean annual temperatures range from 1 °C to 10 °C, with annual precipitation ranging between 400 and 1 400 mm (<https://www.chmi.cz>; Tolasz et al. 2007). The forests cover an area of 2 923.2 thousand hectares, which constitutes 37.1% of the entire land area of the Czech Republic (ÚHÚL 2024). Cambisols (IUSS Working Group WRB 2014) constitute almost 60% of the soils within the forest areas. This is followed by Podzols (approximately 25%), and much smaller portions of the forest soils in Czech forests are Fluvisols, Gleysols, Histosols, Leptosols, Luvisols, Retisols, Stagnosols etc. (Němeček & Kozák 2005; Borůvka et al. 2022).

Soil properties and stand factors. In this study, we focus our assessment on $\text{pH}_{\text{H}_2\text{O}}$ and pH_{KCl} , cat-

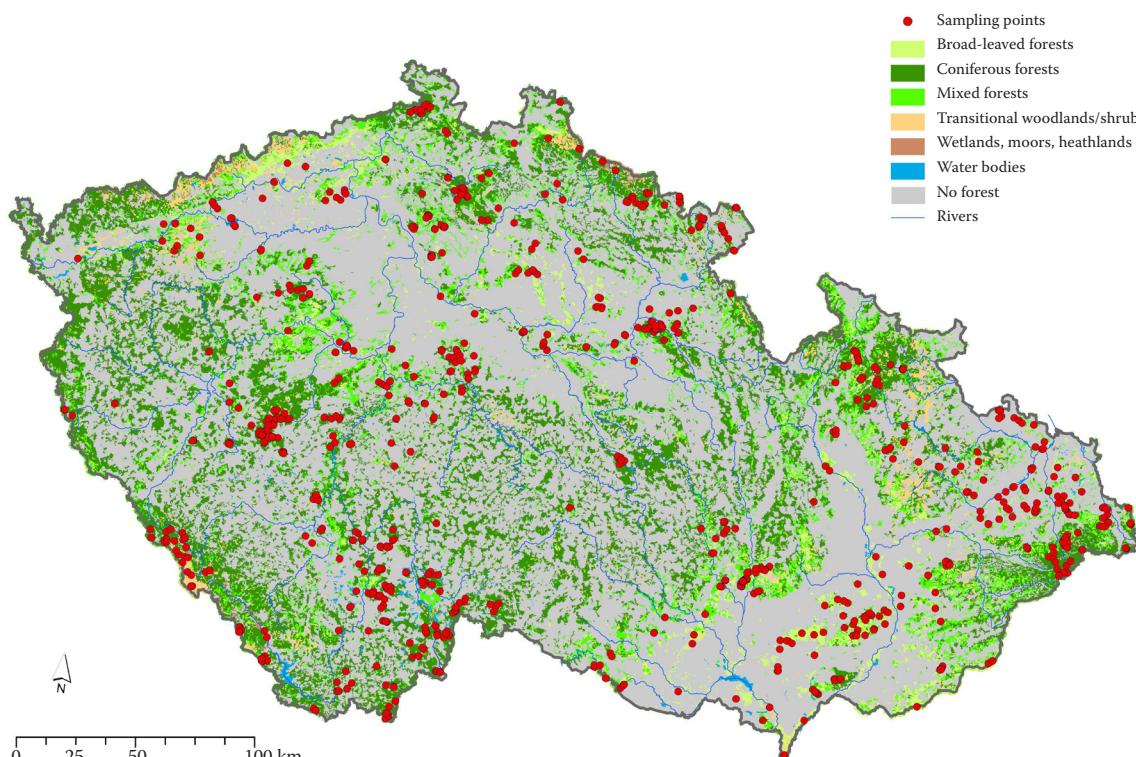


Figure 1. Study area with sampling points

ion exchange capacity (CEC), base saturation (BS), total phosphorus (P), total carbon (C), and total aluminium (Al). The $\text{pH}_{\text{H}_2\text{O}}$ and pH_{KCl} were determined potentiometrically using a glass electrode from soil reaction in water and KCl suspension, respectively. CEC was calculated as the sum of exchangeable elements (H^+ , Al, Ca, Fe, K, Mg, Mn and Na) determined by the atomic absorption spectrometry method, and BS was calculated as the ratio of base elements content and CEC. The contents of P and Al were analysed by the aqua regia extract using atomic absorption spectrometry, carbon was determined by CNS analyser, combustion, or NIRS method (Neudertová Hellebrandová et al. 2024).

The considered stand controlling factors are properties of the parent rocks (acidity and structure), thirteen soil classes, forest types (coniferous, mixed and deciduous), altitude, slope, average annual temperature and mean annual precipitation.

Data sources. The data for this study include forest soil properties, collected by several Czech institutions in different surveys. These institutions are the Forest Management Institute, Central Institute for Supervising and Testing in Agriculture, Forestry and Game Management Research Institute, and the Czech University of Life Sciences Prague. The data collection was carried out between the years 2000 and 2021 across the entire forest areas of the Czech Republic (Neudertová Hellebrandová et al. 2024). The soil properties were recalculated to a uniform depth of the mineral topsoil (0–30 cm). The database provided 8 051 sampling points, however, only 851 points were used for this study, i.e. those sampling points where data on all assessed soil properties were available.

The climate data (mean annual precipitation and average annual temperature) on the forest areas were extracted from the WorldClim.org database at a resolution of 1 km (Fick & Hijmans 2017). Altitude, forest type, and soil classification for the stands were extracted from the digital elevation model (DEM) ArcČR® 500 with resolution of 200 m (ARCDATA PRAHA 2016), CORINE Land Cover 2018 (EEA 2018), and Soil Information System PUGIS at the resolution 1 : 250.000 (Kozák et al. 1996), respectively. Rock structure and acidity classification for the stands were derived from the geological maps of the Czech Republic (Chuman et al. 2014; Tóth et al. 2016; Matys Grygar et al. 2023). For purposes of easy analysis, the parent rocks acidity was given numeric ratings as follows; acid – 1, acid-neutral – 2, neutral – 3, neutral (loess-basic) – 4, neutral-basic – 5, basic – 6, and various – 7. The

parent rock structure was also given the ratings for as follows; fine – 1, fine (tuff-coarse) – 2, fine/coarse – 3, medium to coarse – 4, coarse – 5, various – 6. Qualitative variables (forest types, soil classes) were transformed into bivariate variables: for each category (each forest type, each soil class), a new variable was created with a value of 1 if the category was true for the sampling point, and with a value of 0 if it was not.

Statistical analysis and software. First, summary statistics were calculated on the data. Principal component analysis (PCA) was used for the evaluation of associations within the soil properties and the stand controlling factors. Spatial variability of the soil properties was assessed by semivariograms and cross-variograms. The principal component analysis and the spatial variability seek to show the influence the environmental factors and their variability in space have on the soil properties within the forest areas (Borůvka et al. 2007). Three parameters define the semivariograms and cross-variograms. These are the nugget value, the sill and the range. The nugget value reflects possible errors in sampling and/or variation in distances shorter than the minimum sampling distance. The sill reveals variability within data, thus comparing to the variance. The range for the variogram suggests the distance at which spatial dependence of the soil property ceases (Oliver & Webster 2015; Gringarten & Deutsch 2001).

The semivariogram and cross-variogram model fit is evaluated with the sum of squared error (SSErr). This is the difference between the observed and predicted values. Lower SSErr indicates better model fit (Oliver & Webster 2015; Belkhiri et al. 2020). This evaluation is not possible for comparison between properties of different units. Thus, we used the ratio of the nugget to the sill to evaluate the extent of spatial dependence in both the semivariograms and cross-variograms (Cambardella et al. 1994). The strongest spatial dependences are those with a nugget ratio of less than 25%. Nugget ratios between 25 and 75% indicate moderate spatial dependence, and nugget ratios higher than 75% mean weak spatial dependence (Cambardella et al. 1994).

The descriptive statistics, principal component analysis and variograms were done in R Studio (R Core Team 2022), whilst the cross-variograms were done in the GS+ software (Gamma Design Software 2001).

RESULTS

Descriptive statistics. The average $\text{pH}_{\text{H}_2\text{O}}$ and pH_{KCl} levels were 4.76 and 3.92, respectively. The mean

Table 1. Descriptive statistics for selected forest soil properties

	pH		P		Al		C (%)	CEC (mmol ₍₊₎ /kg)	BS (%)
	H ₂ O	KCl	(mg/kg)						
Mean	4.76	3.92	330.55	1 5367.0		3.46	126.76	40.13	
SD	0.81	0.76	306.02	9 019.4		5.24	112.79	32.29	
Min	2.97	2.32	25.21	85.38		0.09	0.27	2.87	
Max	7.89	7.37	3604.8	56 292.1		42.81	1 056.2	99.91	
Range	4.92	5.05	3579.5	56 206.7		42.72	1 055.9	97.05	
Skewness	1.50	2.17	3.77	0.82		4.17	3.36	0.74	
Kurtosis	2.33	5.48	25.22	1.12		20.84	17.90	-0.92	
1 st Qu.	4.26	3.54	153.33	9 385.0		1.04	61.23	13.37	
3 rd Qu.	5.02	4.02	409.06	20 535.8		3.45	156.35	65.21	

SD – standard deviation; Qu. – quartile; CEC – cation exchange capacity; BS – base saturation

values for the total concentrations of phosphorus, aluminium and carbon were 330 mg/kg, 15.367 mg/kg and 3.46 g/kg, respectively. Cation exchange capacity had an observed mean value of 127 mmol₍₊₎/kg. The mean base saturation value was 40.13% (Table 1).

Principal component analysis. The PCA shows a strong relationship between altitude and precipita-

tion. Altitude and precipitation both have an inverse relationship with temperature. Deciduous forests are in a direct opposite direction to the coniferous forest axis on the PCA plot (Figure 2). The axis of arenic Cambisols (KAR) points in the second upper positive direction of the second dimension of the PCA plot. Arenic Cambisols are inversely positioned to alu-

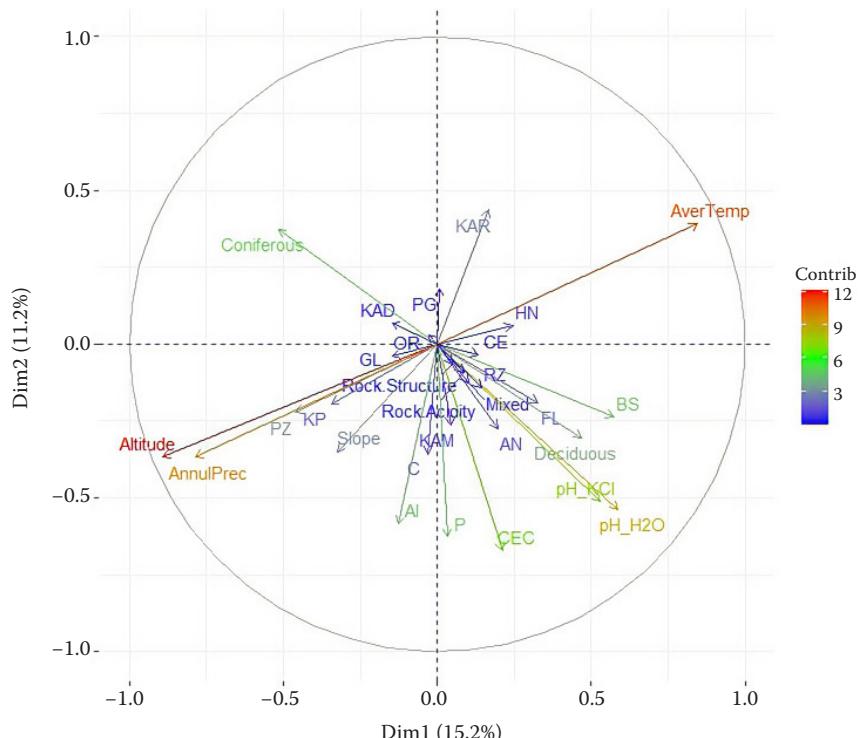


Figure 2. Highlight of principal component analysis (PCA) for forest soil properties and their stand characteristics
 AN – Technosols; CE – Phaeozem; Chernozem; Vertisols; FL – Fluvisols; GL – Gleysols; HN – Luvisols; Retisols; KAD – dystric Cambisols; KAM – eutric Cambisols; KAR – arenic Cambisols; KP – entic Podzols; OR – Histosols (peat soils); PG - Stagnosols; PZ – haplic Podzols; RZ – rendzic/calcaric Leptosols (Zádorová & Penížek 2011; Borůvka et al. 2022)

Table 2. Semivariogram model parameters for soil properties

	pH _{H₂O}	pH _{KCl}	P	Al	C	CEC	BS
Model	exp	exp	exp	exp	sph	exp	sph
Nugget	0.3578	0.2774	77 413.4	46 323 788	19.98	6894.5	579.62
Sill	0.62	0.55	376 804.8	89 098 493	28.44	13617.5	968.99
Nugget ratio (%)	57.65	50.43	20.54	51.99	70.24	50.63	59.81
Range (m)	10 562.3	7 947.5	1 803 677	46 569.5	83 325.4	43 555.6	32 672.6
SSErr	1.02E-07	8.21E-08	14 177.05	4.37E+08	0.0003	33.63	0.14

SSErr – sum of squared error; exp – exponential; sph – spherical; CEC – cation exchange capacity; BS – base saturation

minium, carbon and phosphorus contents, whereas eutric Cambisols (KAM), which are among the most productive soils globally (ISRIC 2024), have a strong direct relationship with these soil properties. The soil classes Phaeozem; Chernozem and Vertisols (CE), rendzic/calcaric Leptosols (RZ), Technosols (AN) and Fluvisols (FL) were in direct relationship with BS and pH (both exchangeable and active). There is a relationship observed between the soil type FL and the soil properties. The position of rock structure and rock acidity (parent material) are hardly visible

in the PCA plot. However, these two controlling factors are weakly related to deciduous and mixed forests, pH (exchangeable and active), base saturation, Fluvisols and Technosols. The PCA plot shows a relationship between soil pH (both exchangeable and active), deciduous forests, and BS. Coniferous forests are positioned in an opposite position to pH, deciduous forests, and BS. The content of phosphorus, aluminium, carbon, CEC and eutric Cambisols are closely related. Strong among them is the relationship between aluminium, phosphorus and CEC. The

Table 3. Cross-variogram model parameters for soil properties vs. forest types

	pH _{H₂O}	pH _{KCl}	P	Al	C	CEC	BS
Model	exp	exp	pure nugget	pure nugget	sph	sph	sph
Coniferous forests							
Nugget	-0.04	-0.04	-21.26	-201.85	-0.13	-2.9	-1.48
Sill	-0.14	-0.10	-21.26	-201.85	-0.28	-9.85	-5.43
Nugget ratio (%)	26.05	35.77	100.00	100.00	45.25	29.44	27.26
Range (m)	55 200	163 100	343 663.35	343 663.4	780 300	86 700	197 300
SSErr	6.61E-04	5.21E-04	522	838557	0.06	84.9	1.21
Deciduous forests							
Model	exp	exp	pure nugget	pure nugget	sph	sph	exp
Nugget	0.03	0.02	17.88	0.00	0.14	2.64	1.51
Sill	0.10	0.07	17.88	0.00	0.35	7.78	4.88
Nugget ratio (%)	26.34	28.12	100.00	100	38.48	33.93	30.96
Range (m)	42 200	46 500	343 663.35	811 000	811 000	51 800	128 400
SSErr	1.02E-03	5.22E-04	398	1.59E+06	0.04	39.1	1.01
Mixed forests							
Model	exp	exp	sph	pure nugget	pure nugget	sph	sph
Nugget	0.02	0.01	0.01	0.1	0.00	0.00	0.00
Sill	0.09	0.07	4.18	0.1	0.00	1.94	1.16
Nugget ratio (%)	16.06	8.17	0.24	100	100	0.05	0.09
Range (m)	75 810	800 800	68 800	730 000	728 900	110 000	170 500
SSErr	8.21E-04	5.87E-04	46	88583	8.50E-03	12.1	1.38

SSErr – sum of squared error; exp – exponential; sph – spherical; CEC – cation exchange capacity; BS – base saturation

direct relationship of slope with carbon, aluminium, phosphorus and KAM is stronger compared to the weak or no relationship of these soil properties with forest types (Figure 2).

Semivariograms. The nugget ratio for the content of phosphorus is less than 25%. All the remaining soil properties have nugget ratio between 25 and 75%. The content of phosphorus is strongly spatially dependent, whereas all the other soil properties are moderately spatially dependent

Cross-variograms for the forest soil properties and their controlling stand factors. A strong spatial dependence is seen between all the soil properties and the mixed forests. Phosphorus content shows no spatial dependence with coniferous and deciduous forests. The content of aluminium shows no spatial dependence with coniferous forests, however, with deciduous forests, aluminium shows a strong spatial dependence. Moderate spatial dependence is observed for pH(active and exchangeable), carbon content, CEC and BS with coniferous and deciduous forests (Table 3). The properties of $\text{pH}_{\text{H}_2\text{O}}$, P, Al, CEC and BS show strong spatial dependence with altitude. The strongest spatial dependence of altitude is with Al which recorded a nugget ratio of 0.15%. Moderate spatial dependence is observed for exchangeable reaction and carbon in their relationship with altitude. The P and Al contents show moderate spatial dependence with slope. However, pH (active and exchangeable), carbon, cation exchange capacity,

and base saturation are strongly spatially dependent with less than a 25% nugget ratio (Table 4).

The cross-variograms show inverse relationships between coniferous forests and pH (active and exchangeable), as well as aluminium, carbon, CEC, and BS. Altitude and slope are inversely related to pH (active and exchangeable) and BS. Deciduous forests are inversely related to aluminium. An inverse spatial relationship is found between mixed forests and carbon.

DISCUSSION

These pH levels compare to observed pH of 4 and 3.62 for active and exchangeable reactions, respectively, for studies conducted within the acidic forest soils in the Jizera Mountains region of Czechia (Borůvka et al. 2005). A comparison of total P content in five sites in the frame of Pan-European International Co-operative Program on assessment and monitoring of air pollution effects on forests (ICP Forests) in Central Europe showed mean contents of 2 966, 1 375, 1 017, 929 and 195 mg/kg for Bad Brücknau, Mitterfels, Vessertal, Conventwald and Lüss sites in central, southern and north Germany (Lang et al. 2017). The observed mean for P in our study was only higher than the P poor Lüss site amongst the ICP forest sites. An average total Al content of 1 487 mg/kg was observed for a reclaimed mining site in Lítov, north -west of the Bohemia region of Czechia

Table 4. Cross-variogram model parameters for soil properties terrain factors

	$\text{pH}_{\text{H}_2\text{O}}$	pH_{KCl}	P	Al	C	CEC	BS
Model	exp	exp	sph	sph	sph	pure nugget	exp
Altitude							
Nugget	-29.1	-25.3	4970	1000	88.7	10	-810
Sill	-119.2	-100.87	23740	651200	303.9	10	-3958
Nugget ratio (%)	24.41	25.08	20.94	0.15	29.19	100	20.46
Range (m)	496 800	615 700	790 200	157 800	811 000	730 200	147 900
SSErr	357	456	7.29E+07	2.17E+11	26882	1.68E+07	1.04E+06
Slope							
Model	sph	sph	exp	sph	sph	exp	exp
Nugget	0.00	0.00	3.32	15.44	0.01	0.00	-0.20
Sill	-0.03	-0.02	8.05	38.38	0.14	1.26	-0.89
Nugget ratio (%)	1.90	7.83	41.27	40.23	6.92	0.08	23.05
Range (m)	811 000	811 000	811 000	56 300	782 400	34 300	811 000
SSErr	8.44E-04	5.14E-04	4.84	25168	1.92E-03	0.72	0.79

SSErr – sum of squared error; exp – exponential; sph – spherical; CEC – cation exchange capacity; BS – base saturation



Figure 3. Semivariograms for the forest soil properties with distances: active soil reaction (A), exchangeable soil reaction (B), phosphorus (C), aluminium (D), carbon (E), cation exchange capacity (F), base saturation (G)

(Borůvka & Kozák 2001). The mean percentage carbon concentration observed in this study compares to 4.5% total carbon found by Mládková et al. (2005) in the Jizera Mountain region of Czechia. This low mean percentage of carbon within the mineral 0–30 cm of forest soil could result from Mor or Moder humus forms, which, although they have bigger organic carbon accumulated in their forest floor, the mineral topsoil is rather poor in organic matter (Weston & Whittaker 2004). The observed mean CEC value, which is higher than 40 mmol₍₊₎/kg, suggests that the forest soils in the Czech Republic have higher resistance to chemical changes that may be occasioned

by land use. The mean BS value suggests moderately leached base cations and or moderately rich parent material (Hazelton & Murphy 2007).

The relationship between altitude and precipitation comes from the use of the digital elevation model as a covariate for interpolating the climatic data (Fick & Hijmans 2017). Cambisols are the dominating soil type within the study area, among the 13 soil types considered for this study (Němeček & Kozák 2005; Borůvka et al. 2022). Cambisols were therefore further categorized into arenic, dystric and eutric (Zádorová & Penížek 2011; Borůvka et al. 2022). The dystric Cambisols (KAD) are generally acidic,

and have low base saturation (Zádorová & Penížek 2011; Preusser et al. 2021; Beck-Broichsitter et al. 2022). These characteristics of dystric Cambisols correlate with coniferous forests, where mineral topsoils are also known to be acidic and have low base saturation (Šantrúčková et al. 2019). Deciduous forest soils are not strongly acidic, and have higher base saturation (Šantrúčková et al. 2019). Cambisols properties generally depend more on parent material rather than forest types (Petrášová et al. 2009), arenic Cambisols are characterised by their sand, loamy sand, or sandy loam textural classification (Zádorová & Penížek 2011). Arenic Cambisols have dominance of sand, therefore lower content of aluminosilicates as a potential source of Al. Moreover, their coarser texture means that they have a smaller ability to retain nutrients and other elements (lower sorption capacity and stronger leaching due to high permeability). Eutric Cambisols are often formed on silicate rocks, which means a much stronger source of Al and other elements (Krasilnikov et al. 2013; Grčman et al. 2023). Fluvisols are characterised by neutral or near neutral reaction, with good base saturation in their exchange complex (ISRIC 2024). The soil pH (exchangeable and active), deciduous forests, and BS relationship suggests greater influence of forest types (coniferous and deciduous) on the pH and availability of cations within the topsoils for the forest areas, compared to the geological properties of parent materials from which these soils are formed (Augusto et al. 2015). This is further supported by the observed weak relationship between parent material and the controlling factors of deciduous and mixed forests, pH, and base saturation. We explain this to mean that the deciduous and mixed forests are more often on coarser and less acidic rocks and have higher pH and BS. Nevertheless, the contribution of the rock characteristics is quite low, which means that the effect of the rock is low or, more probably, it is hidden by other factors like forest type or soil class. Gruba & Mulder (2015) argued that tree species composition may influence changes in organic carbon, soil reaction, cation exchange capacity, exchangeable cations, base saturation and aluminium bonding in forest soils. The accumulation, movement and availability of phosphorus within forest soils is influenced by aluminium dynamics (SanClements et al. 2010). The availability of phosphorus to forest trees is influenced by their sorption mechanism, and this mechanism is influenced by soil organic carbon content, soil reaction and clay minerals (Duputel

et al. 2013). The comparatively stronger relationship of the slope with carbon, aluminium, phosphorus and KAM is an indication of how the slope has a stronger influence on carbon, aluminium, and phosphorus, compared to its influence on pH (active and exchangeable) and base saturation, which is more influenced by forest types (Gruba & Mulder 2015). This also indicates that carbon accumulation in either the forest floor or topsoil can be influenced by the slope in the forest landscape. Slope gradient influence the distribution and storage of soil organic carbon through erosion and sedimentation (Chaplot et al. 2009). Slope shape (uniform, concave, and convex slopes) influences the variation in the amount and distribution of organic matter and sediments along hillslope during or between series of flow events (Sensoy & Kara 2014).

Strong spatial dependence is controlled by intrinsic factors, whereas external factors control weakly spatially dependent soil properties (Cambardella et al. 1994). The soil properties have shown an influence of internal factors on their spatial dependence, with phosphorus having the strongest influence. Phosphorus, which is influenced by aluminium, sorption mechanism, carbon and soil reaction (SanClements et al. 2010; Duputel et al. 2013) is seen in a relationship with aluminium, and cation exchange capacity in the PCA. The absence of spatial dependence from the cross-variograms with forest types means that phosphorus and aluminium are not spatially related to coniferous forests. However, aluminium is strongly spatially related to deciduous forests. We see from their relationship with the environmental factors in the PCA, an influence of deciduous forests, indicating higher total concentrations of both elements under broadleaved trees than under conifers.

CONCLUSION

Spatial analysis of data from Czech forests imply that forest types have a greater influence on soil pH and BS compared to the geological properties of parent materials, whose influence is low or dominated by other controlling factors like forest type or soil class. Deciduous forest soils are not strongly acidic and have higher base saturation. This attribute of deciduous forest soils is also apparent in mixed forests, where deciduous trees co-exist with coniferous trees. The deciduous and mixed forests are more often on soils developed from coarser and less acidic rocks which results in higher pH and BS.

Phosphorus is influenced by aluminium and cation exchange capacity. The accumulation, movement and availability of phosphorus within forest soils is influenced by aluminium abundance and dynamics.

REFERENCES

ARCDATA PRAHA (2016): ArcČR 500 – Digital Geographical Database. Prague, ZÚ, ČSÚ. (in Czech)

Augusto L., De Schrijver A., Vesterdal L., Smolander A., Prescott C., Ranger J. (2015): Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. *Biological Reviews*, 90: 444–466.

Baritz R., Seufert G., Montanarella L., Van Ranst E. (2010): Carbon concentrations and stocks in forest soils of Europe. *Forest Ecology and Management*, 260: 262–277.

Beck-Broichsitter S., Gerriets M.R., Neumann M., Kubat J.-F., Dusek J. (2022): Spatial particle size distribution at intact sample surfaces of a Dystric Cambisol under forest use. *Journal of Hydrology and Hydromechanics*, 70: 30–41.

Belkhiri L., Tiri A., Mouni L. (2020): Spatial distribution of the groundwater quality using kriging and co-kriging interpolations. *Groundwater for Sustainable Development*, 11: 100473.

Berger T.W., Türtscher S., Berger P., Lindebner L. (2016): A slight recovery of soils from acid rain over the last three decades is not reflected in the macro nutrition of beech (*Fagus sylvatica*) at 97 forest stands of the Vienna Woods. *Environmental Pollution*, 216: 624–635.

Binkley D., Fisher R.F. (2013): *Ecology and Management of Forest Soils*. 4th Ed. Hoboken, Wiley-Blackwell.

Borůvka L., Kozák J. (2001): Geostatistical investigation of a reclaimed dumpsite soil with emphasis on aluminum. *Soil and Tillage Research*, 59: 115–126.

Borůvka L., Mládková L., Drábek O. (2005): Factors controlling spatial distribution of soil acidification and Al forms in forest soils. *Journal of Inorganic Biochemistry*, 99: 1796–1806.

Borůvka L., Mládková L., Penížek V., Drábek O., Vašát R. (2007): Forest soil acidification assessment using principal component analysis and geostatistics. *Geoderma*, 140: 374–382.

Borůvka L., Vašát R., Němeček K., Novotný R., Šrámek V., Vacek O., Pavlů L., Fadrhoncová V., Drábek O. (2020): Application of regression-kriging and sequential Gaussian simulation for the delineation of forest areas potentially suitable for liming in the Jizera Mountains region, Czech Republic. *Geoderma Regional*, 21: e00286.

Borůvka L., Vašát R., Šrámek V., Neudertová Hellebran-dová K., Fadrhoncová V., Sáňka M., Pavlů L., Sáňka O., Vacek O., Němeček K., Nozari S., Oppong Sarkodie V.Y. (2022): Predictors for digital mapping of forest soil organic carbon stocks in different types of landscape. *Soil and Water Research*, 17: 69–79.

Burke D.J., Knisely C., Watson M.L., Carrino-Kyker S.R., Mauk R.L. (2016): The effects of agricultural history on forest ecological integrity as determined by a rapid forest assessment method. *Forest Ecology and Management*, 378: 1–13.

Camardella C.A., Moorman T.B., Novak J.M., Parkin T.B., Karlen D.L., Turco R.F., Konôpka A.E. (1994): Field-scale variability of soil properties in central Iowa soils. *Soil Science Society of America Journal*, 58: 1501–1511.

Chaplot V., Podwojewski P., Phachomphon K., Valentin C. (2009): Soil erosion impact on soil organic carbon spatial variability on steep tropical slopes. *Soil Science Society of America Journal*, 73: 769–779.

Chuman T., Görtlerová P., Hruška J., Adamová M. (2014): Geochemical reactivity of rocks of the Czech Republic. *Journal of Maps*, 10: 341–349.

Duputel M., Devau N., Brossard M., Jaillard B., Jones D.L., Hinsinger P., Gérard F. (2013): Citrate adsorption can decrease soluble phosphate concentration in soils: Results of theoretical modeling. *Applied Geochemistry*, 35: 120–131.

EEA (2018): CORINE Land Cover (CLC) 2018, Version 20, European Environment Agency, Copenhagen, Denmark. Available on <https://www.eea.europa.eu/data-and-maps/data/corine-land-cover-accounting-layers> (accessed Oct 23, 2020).

Fick S.E., Hijmans R.J. (2017): WorldClim 2: New 1 km spatial resolution climate surfaces for global land areas. *International Journal of Climatology*, 37: 4302–4315.

Gamma Design Software (2001): GS+ Geostatistics for Environmental Sciences. Available on www.gammadesign.com

Gorte R.W. (2009): Carbon Sequestration in Forests. CRS Report for Congress. Congressional Research Service. Available on <https://sgp.fas.org/crs/misc/RL31432.pdf>

Grčman H., Turniški R., Suhadolc M. (2023): Eutric Cambisols – Slovenia's best agricultural soils. *Geodetski Vestnik*, 67: 297–324.

Gringarten E., Deutsch C.V. (2001): Teacher's aide variogram interpretation and modeling. *Mathematical Geology*, 33: 507–534.

Gruba P., Mulder J. (2015): Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils. *Science of the Total Environment*, 511: 655–662.

Hazelton P., Murphy B. (2007): *Interpreting Soil Test Results: What Do All the Numbers Mean?* CSIRO Publishing.

ISRIC (2024): Major Soils of the World. Available on <https://www.isric.org> (accessed May 15, 2024).

IUSS Working Group WRB (2014): World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. 3rd Ed. Rome, FAO.

Kozák J., Němeček J., Jetmar M. (1996): The database of soil information system – PUGIS. Rostlinná Výroba, 42: 529–534.

Krasilnikov P., Gutiérrez-Castorena M.D.C., Ahrens R.J., Cruz-Gaistardo C.O., Sedov S., Solleiro-Rebolledo E. (2013): Major soil types and their classification. In: Krasilnikov P., Gutiérrez-Castorena M.D.C., Ahrens R.J., Cruz-Gaistardo C.O., Sedov S., Solleiro-Rebolledo E. (eds.): The Soils of Mexico. World Soils Book Series, Dordrecht, Springer: 33–74.

Krupová D., Fadrhoncová V., Pavlendová H., Pavlenda P., Tóthová S., Šrámek V. (2018): Atmospheric deposition of sulphur and nitrogen in forests of the Czech and Slovak Republic. Central European Forestry Journal, 64: 249–256.

Lang F., Krüger J., Amelung W., Willbold S., Frossard E., Bünenmann E.K., Bauhus J., Nitschke R., Kandeler E., Marhan S., Schulz S., Bergkemper F., Schloter M., Luster J., Guggisberg F., Kaiser K., Mikutta R., Guggenberger G., Polle A., Pena R., Prietzel J., Rodionov A., Talkner U., Meesenburg H., von Wilpert K., Holscher A., Dietrich H.P., Chmara I. (2017): Soil phosphorus supply controls P nutrition strategies of beech forest ecosystems in Central Europe. Biogeochemistry, 136: 5–29.

Matys Grygar T., Elznicová J., Tůmová Š., Kylich T., Skála J., Hron K., Álvarez-Vázquez M.Á. (2023): Moving from geochemical to contamination maps using incomplete chemical information from long-term high-density monitoring of Czech agricultural soils. Environmental Earth Sciences, 82: 6.

Mládková L., Borůvka L., Drábek O. (2005): Soil properties and selected aluminium forms in acid forest soils as influenced by the type of stand factors. Soil Science and Plant Nutrition, 51: 741–744.

Němeček J., Kozák J. (2005): Status of soil surveys, inventory and soil monitoring in the Czech Republic. European Soil Bureau Research Report No.9, EUR 20559 EN. 2nd Ed. The European Soil Bureau, Joint Research Centre: 103–109.

Neudertová Hellebrandová K., Fadrhoncová V., Šrámek V. (2024): Aggregated database of forest soil chemical properties in the Czech Republic based on surveys from 2000 to 2020. Annals of Forest Science, 81: 17.

Nieman S.C., Johnson C.E. (2021): Net geochemical release of base cations from 25 forested watersheds in the Catskill region of New York. Frontiers in Forests and Global Change, 4: 667605.

Novotný R., Lomský B., Šrámek V. (2018): Changes in the phosphorus and nitrogen status and supply in the young spruce stands in the Lužické, the Jizerské and the Orlické Mts. in the Czech Republic during the 2004–2014 period. European Journal of Forest Research, 137: 879–894.

Oliver M.A., Webster R. (2015): Basic Steps in Geostatistics: The Variogram and Kriging. Springer Briefs in Agriculture.

Oppong Sarkodie V.Y., Vašát R., Pouladi N., Šrámek V., Sánka M., Fadrhoncová V., Hellebrandová K.N., Borůvka L. (2023): Predicting soil organic carbon stocks in different layers of forest soils in the Czech Republic. Geoderma Regional, 34: e00658.

Page-Dumroese D.S., Sanchez F.G., Udawatta R.P., Perry C. (Hobie), González G. (2021): Soil health assessment of forest soils. In: Karlen D.L., Stott D.E., Mikha M.M. (Eds.): Approaches to Soil Health Analysis. Vol. 1. Soil Health Series. 1st Ed. SSSA Books, John Wiley & Sons, Inc.: 100–138.

Petrášová V., Martinec J., Pospíšilová L. (2009): Total carbon content and humic substances quality in selected subtypes of Cambisols. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 4: 73–81.

Preusser S., Liebmann P., Stucke A., Wirsching J., Müller K., Mikutta R., Guggenberger G., Don A., Kalbitz K., Bachmann J., Marhan S., Poll C., Kandeler E. (2021): Microbial utilisation of aboveground litter-derived organic carbon within a sandy Dystric Cambisol profile. Frontiers in Soil Science, 1: 666950.

R Core Team (2022): R: A language and environment for statistical computing. R Foundation for Statistical Computing. Available on <https://www.R-project.org/>

Rivas-Martínez S., Penas A., Díaz T.E. (2004): Bioclimatic and Biogeographic Maps of Europe. Léon, University of León.

SanClementes M.D., Fernandez I.J., Norton S. . (2010): Phosphorus in soils of temperate forests: Linkages to acidity and aluminum. Soil Science Society of America Journal, 74: 2175–2186.

Šantrúčková H., Cienciala E., Kaňa J., Kopáček J. (2019): The chemical composition of forest soils and their degree of acidity in Central Europe. Science of the Total Environment, 687: 96–103.

Sensoy H., Kara O. (2014): Slope shape effect on runoff and soil erosion under natural rainfall conditions. iForest – Biogeosciences and Forestry, 7: 110–114.

Soucémarijanadin L.N., Cécillon L., Guenet B., Chenu C., Baudin F., Nicolas M., Girardin C., Barré P. (2018): Environmental factors controlling soil organic carbon stability in French forest soils. Plant and Soil, 426: 267–286.

Tolasz R., Míková T., Valeriánová A., Voženílek V. (2007): Atlas of the Czech Climate. Palacky University in Olomouc, CHMI.

Tóth G., Hermann T., Da Silva M.R., Montanarella L. (2016): Heavy metals in agricultural soils of the European Union with implications for food safety. *Environment International*, 88: 299–309.

ÚHÚL (2024): Forest area and forest cover in the Czech Republic. Available on <https://www.uhul.cz/plocha-lesa-a-lesnatost-v-ceske-republice/> (accessed May 26, 2024).

Weston C.J., Whittaker K.L. (2004): Soil biology and tree growth. In: *Encyclopedia of Forest Sciences*. 1st Ed., Elsevier, Ltd.: 1183–1189.

Zádorová T., Penížek V. (2011): Problems in correlation of Czech national soil classification and World Reference Base 2006. *Geoderma*, 167–168: 54–60.

Zhang H., Song T., Wang K., Yang H., Yue Y., Zeng Z., Peng W., Zeng F. (2016): Influences of stand characteristics and environmental factors on forest biomass and root-shoot allocation in southwest China. *Ecological Engineering*, 91: 7–15.

Received: September 22, 2024

Accepted: November 11, 2024

Published online: January 3, 2025