Nitrogen conversion and nitrous oxide hot spots in energy crop cultivation

H.J. Hellebrand¹, V. Scholz², J. Kern³

¹Department of Technology-Assessment and Substance Cycles, ²Department of Post Harvest Technology, ³Department of Bioengineering, Leibniz-Institute for Agricultural Engineering Potsdam-Bornim (ATB), Potsdam, Germany

Abstract: Since 1999, nitrous oxide (N₂O) soil emissions from sites cultivated with energy plants have been measured by gas chromatography and gas flux chambers in experimental fields. The main aim of this study was the nitrogen conversion factor and its variability for sandy soils under climatic conditions of Central Europe. Annual plants (hemp, rape, rye, sorghum, triticale) and perennial plants (grass, perennial rye, poplar, willow) were fertilised with three different levels of nitrogen (150 kg N/ha/year, 75 kg N/ha/year, and none). The annual nitrogen conversion factors were derived from the annual mean differences between the fertilised sites and non-fertilised control sites. The mean nitrogen conversion factor for the non-cultivated soils was lower (perennial crops: 0.4%) than that for the regularly cultivated soils (annual crops: 0.9%). Few times, enhanced N₂O emission spots with maxima above 1000 µg N₂O/m²/h, lasting for several weeks, were observed in the course of measurements. The influence of these local peak emissions on the nitrogen conversion factor is discussed.

Keywords: nitrogen fertilisation level; N₂O soil flux; cultivated and non-cultivated soils; perennial and annual plants

Nitrogen (N) fertilising is one of the main sources of anthropogenic contribution to the global dinitrogen oxide (nitrous oxide — N₂O) emission. In soil, N₂O is produced predominantly by two microbial processes, the oxidation of ammonium (NH₄⁺) to nitrate (NO₃⁻; called nitrification) and the reduction of NO₃⁻ to gaseous forms NO, N₂O, and N₂ (called denitrification; Firestone 1982). The rate of N₂O production depends on the availability of mineral N in the soil and the conversion factor (ratio of nitrous oxide-nitrogen (N₂O-N) emission to the input of fertiliser-N) to nitrate (NO₃⁻; called nitrification) and the reduction of NO₃⁻ to gaseous forms NO, N₂O, and N₂ (called denitrification; Firestone 1982). The rate of N₂O production depends on the availability of mineral N in the soil and the conversion factor (ratio of nitrous oxide-nitrogen (N₂O-N) emission to the input of fertiliser-N) to nitrate (NO₃⁻; called nitrification) and the reduction of NO₃⁻ to gaseous forms NO, N₂O, and N₂ (called denitrification; Firestone 1982). The rate of N₂O production depends on the availability of mineral N in the soil and the conversion factor (ratio of nitrous oxide-nitrogen (N₂O-N) emission to the input of fertiliser-N) to nitrate (NO₃⁻; called nitrification) and the reduction of NO₃⁻ to gaseous forms NO, N₂O, and N₂ (called denitrification; Firestone 1982). The rate of N₂O production depends on the availability of mineral N in the soil and the conversion factor (ratio of nitrous oxide-nitrogen (N₂O-N) emission to the input of fertiliser-N) to nitrate (NO₃⁻; called nitrification) and the reduction of NO₃⁻ to gaseous forms NO, N₂O, and N₂ (called denitrification; Firestone 1982).
Table 1. Plants at the columns (1–10) of the experimental field since 1999 (each column consists of 4 differently fertilised sites: A, B, C, and D)

<table>
<thead>
<tr>
<th>Period (month/year)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/1998–03/1999</td>
<td>G*</td>
<td>W*</td>
<td>P1</td>
<td>P2**</td>
<td>P3</td>
<td>F</td>
<td>T</td>
<td>R1*</td>
<td>T1*</td>
<td>F</td>
</tr>
<tr>
<td>04/1999–09/1999</td>
<td>G*</td>
<td>W*</td>
<td>P1</td>
<td>P2**</td>
<td>P3</td>
<td>H1</td>
<td>T</td>
<td>R1*</td>
<td>T1*</td>
<td>H2</td>
</tr>
<tr>
<td>10/1999–03/2000</td>
<td>G*</td>
<td>W*</td>
<td>P1</td>
<td>P2**</td>
<td>P3</td>
<td>R1</td>
<td>T</td>
<td>H1*</td>
<td>F*</td>
<td>H2</td>
</tr>
<tr>
<td>04/2000–09/2000</td>
<td>G*</td>
<td>W*</td>
<td>P1</td>
<td>P2**</td>
<td>P3</td>
<td>R1</td>
<td>T</td>
<td>H1*</td>
<td>Ra*</td>
<td>R1</td>
</tr>
<tr>
<td>10/2000–03/2001</td>
<td>G*</td>
<td>W*</td>
<td>P1</td>
<td>P2**</td>
<td>P3</td>
<td>T2</td>
<td>T</td>
<td>R4*</td>
<td>F</td>
<td>G,C</td>
</tr>
<tr>
<td>04/2001–09/2001</td>
<td>G*</td>
<td>W*</td>
<td>P1</td>
<td>P2**</td>
<td>P3</td>
<td>T2</td>
<td>H1</td>
<td>R4*</td>
<td>H1</td>
<td>G,C</td>
</tr>
<tr>
<td>10/2001–03/2002</td>
<td>G</td>
<td>W*</td>
<td>P1</td>
<td>P2**</td>
<td>P3</td>
<td>R2*</td>
<td>F*</td>
<td>Re*</td>
<td>H1</td>
<td>G,A,C</td>
</tr>
<tr>
<td>10/2004–03/2005</td>
<td>G</td>
<td>W*</td>
<td>P1</td>
<td>P2**</td>
<td>P3</td>
<td>F*</td>
<td>T2*</td>
<td>R2*</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>04/2005–09/2005</td>
<td>G1</td>
<td>W*</td>
<td>P1</td>
<td>P2**</td>
<td>P3</td>
<td>H1*</td>
<td>T2*</td>
<td>R2*</td>
<td>S*</td>
<td>SF*</td>
</tr>
<tr>
<td>10/2005–03/2006</td>
<td>G1</td>
<td>W*</td>
<td>P1</td>
<td>P2**</td>
<td>R5*</td>
<td>R6*</td>
<td>R7*</td>
<td>R2*</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>04/2006–09/2006</td>
<td>S</td>
<td>W*</td>
<td>P1</td>
<td>P2**</td>
<td>R5*</td>
<td>R6*</td>
<td>R7*</td>
<td>R2*</td>
<td>H</td>
<td>F</td>
</tr>
</tbody>
</table>

*Columns with one measuring spot per site A, B, C, and D
**Columns with two measuring spots per site A, B, C, and D
A – Alfalfa (Medicago sativa)
C – Clover (Trifolium repens)
Co – Corn (Zea mays)
F – Fallow land
G – Grass (orchard grass: Dactylis glomerata L.)
G1 – Sudan grass (Sorghum bicolor (L.) Moench ssp. drummondii)
H1 – Hemp (Cannabis sativa L.) var. Felina 34
H2 – Hemp (Cannabis sativa L.) var. Fedrina 74
P1 – Poplar (Populus maximowiczii x P. nigra) var. Japan 105 with grass
P2 – Poplar (Populus maximowiczii x P. nigra) var. Japan 105
P3 – Poplar (Populus maximowiczii x P. trichocarpa) var. NE 42 with grass
R – Rape (Brassica napus L. spp. oleifera Metzg.) var. Licosmos
Rb – Rape (Brassica napus L., spp. oleifera Metzg.) var. Express
Re – Rape (Brassica napus L., spp. oleifera Metzg.) var. Artus
R1 – Rye (Secale cereale L.) var. Amilo
R2 – Rye (Secale cereale L.) var. Matador
R3 – Rye (Secale cereale L.) var. Avanti
R4 – Rye (Secale cereale L.) var. Hacada
R5 – Perennial Rye (Lolium perfoliatum L.) var. Waldi
R6 – Perennial rye (Secale montanum L.) var. Permonta
R7 – Perennial Rye (Secale cereale L.) var. RPM 1
S – Sorghum (pearl millet: Pennisetum glaucum (L.) R. Br.) var. Rona 1
SF – Sunflowers (Helianthus annuus L.) var. KW0411
T – Topinambur (Jerusalem artichoke: Helianthus tuberosus L.)
T1 – Triticale (X Triticosecale Wittm.) var. Alamo
T2 – Triticale (X Triticosecale Wittm.) var. Modus
W – Willow (Salix viminalis) with grass

Conditions, since soil N₂O emissions are regulated by temperature and soil moisture, and thus they are likely to respond to climatic changes (Frolking et al. 1998; Ruser et al. 2006).

In addition to this background variability, agricultural management such as tillage and fertilising schedule may enhance N₂O emission (Hénault et al. 1998a, b). Tillage can cause immediate changes...
in the microbial community structure as reported by Jackson et al. (2003), thus producing large N\textsubscript{2}O emissions at the beginning of the crop season. The spatial variability is mainly caused by heterogeneity in the soil properties and agricultural management (Kaiser & Ruser 2000). Additionally, there are different short time emission peaks lasting for hours or days and weeks, whose source is not explicitly known (Veldkamp & Keller 1997; Van der Weerden et al. 1999; Brown et al. 2002; Dobbie & Smith 2003; Hellebrand et al. 2003).

Nitrification and denitrification processes may be stimulated after the application of nitrogen fertilisers (e.g. Firestone & Davidson 1989; Mosier 1994; Dobbie et al. 1999; Freney 1997). The balance between the two processes contributing to the N\textsubscript{2}O emission will vary with climate, soil conditions, and soil management (Skiba & Smith 2000). Soil cultivation and precipitation, affecting the soil air exchange rate, should also influence nitrification and denitrification, which are aerobic and anaerobic processes, respectively (Pinto et al. 2004).

Numerous authors studied the emission of N\textsubscript{2}O dependent on the soil type, fertilisation, and crop species (e.g. Flessa et al. 1998; Hénault et al. 1998a; Dobbie et al. 1999). There are still uncertainties regarding the soil specific conversion factor, especially the influence of precipitations, soil moisture, temperature, soil nitrate concentration, and other variables (Maljanen et al. 2004). Since the N\textsubscript{2}O emission factor depends on the local conditions, the main aim of this study was to determine this factor and its typical variability for the cultivation of annual and perennial crops on sandy soils under climatic conditions of Central Europe.

MATERIALS AND METHODS

N\textsubscript{2}O flux measurements have been performed since 1999 at an experimental field with various crops cultivated for the production of biofuels. The experimental field was established in 1994. The topsoil texture was classified as loamy sand with sufficient homogeneity (Hellebrand & Scholz 2000). The weather means at the Potsdam Weather Service station (about 10 km away) between 1951 and 1980 were 8.6°C for air temperature and 595 mm for precipitations. In the period of this study, the mean temperature increased (mean of the years 1999–2006: 9.8°C) and the mean annual precipitations decreased (mean of the years 1999–2006: 563.9 mm; DWD 2007).

The field was subdivided into 40 sites (Figure 1). Different plant varieties (Table 1) or plant combinations were arranged as columns (four sites each, labelled as A, B, C, and D). Grass (column 1) was mowed two to three times every year. The short rotation wood (or “field wood”: poplar and willow; column 2 to 5) was periodically harvested (every two to four years). The crops in columns 6 to 10 were annual plants (hemp, rape, rye, sorghum, triticale) and perennial plants with cultivation periods of two to three years (perennial rye and Jerusalem artichoke). These crops were rotated or planted according to the actual research aims.

The four rows A to D, perpendicular to the columns, were fertilised with different levels of nitrogen (fertiliser: calcium ammonium nitrate; A: 150 kg N/ha/year; B and C: 75 kg N/ha/year) supplemented with PK-fertiliser (A), wood ashes (B), and straw ashes (C), and sites without fertilisation (D).
Gas flux measurements were performed usually four times a week by means of the closed chamber technique and a gas chromatograph (GC: Shimadzu GC 14A). PVC-sealing rings (Y profile, sealing by water level) for the gas flux chambers (cover boxes) were embedded in the soil of the sites A to D of the columns measured (Table 1). The PVC-gas flux chambers had the volume (V) to area (A) ratio \(V/A = 0.315 \) m, and the volume of 0.064 m³. The fluxes were measured in mornings between 10 to 12 a.m. Two evacuated gas samplers (100 cm³ bottles with Teflon sealing and vacuum taps) were connected to each box. The first was filled when the box was put on the water-sealed ring on the soil and the second one after one hour enclosure time. The samplers were then connected with a PC-controlled GC-injection system (Loftfield et al. 1997). For each level of fertilisation, the \(N_2O \) emission factor was calculated by means of the difference between the annual mean values of the fertilised sites and of the non-fertilised sites.

\(\text{CO}_2 \) and \(N_2O \), both of them generated in the soil, have nearly equal diffusion constants. The easily measurable \(\text{CO}_2 \) served for the evaluation of linearity and mixing homogeneity of the measuring chamber (measurements at several heights in the closed chamber). The measurements of the increase of \(\text{CO}_2 \) concentration in the flux chambers on bare soil showed that the increase in concentration was linear (\(R^2 \) higher than 0.99) during the measurement periods of more than two hours (Figure 2 and Hellebrand & Scholz 1998).

The \(N_2O \) emission factor, also called N conversion factor, is defined as the ratio of the annual fertiliser induced \(N_2O-N \) emission to the annual input of fertiliser-N (De Klein et al. 2006). The N conversion factor for the individual crop sites was calculated by taking the difference between the annual \(N_2O-N \) emissions from the fertilised sites A, B, or C of a column, and the non-fertilised site D of the same column. The annual \(N_2O-N \) emission from the site considered was obtained by averaging all \(N_2O-N \) fluxes measured in the course of one year and multiplied by time.

RESULTS AND DISCUSSION

The emission of \(N_2O \) followed the expected pattern of fertiliser-induced emissions (Figure 3 to 5, fertilisation date in Table 2). Enhanced \(N_2O \) emissions were detectable at the fertilised sites after fertilisation and lasted from three to six weeks. We have also found temporarily and spatially limited high fluctuations throughout the entire study since 1999. \(N_2O \) emission peaks over 1000 µg \(N_2O/m^2/h \) have been observed in a few measuring spots (Figures 4 and 5).

These findings are in accordance with other studies (e.g. Augustin et al. 1998; Röver et al. 1998).

Table 2. Fertiliser application and fertilisation rates

<table>
<thead>
<tr>
<th>Year</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st fertilisation</td>
<td>March 26</td>
<td>April 14</td>
<td>April 17</td>
<td>April 9</td>
<td>April 8</td>
<td>April 21</td>
<td>April 18</td>
<td>April 24</td>
<td>April 2</td>
</tr>
<tr>
<td>2nd fertilisation</td>
<td>May 7</td>
<td>May 5</td>
<td>May 7</td>
<td>May 13</td>
<td>May 14</td>
<td>May 6</td>
<td>May 10</td>
<td>May 5</td>
<td>May 3</td>
</tr>
<tr>
<td>3rd fertilisation</td>
<td>May 18</td>
<td>May 25</td>
<td>May 14</td>
<td>May 21</td>
<td>June 2</td>
<td>May 18</td>
<td>May 19</td>
<td>May 26</td>
<td>June 1</td>
</tr>
</tbody>
</table>

1st fertilisation – A: 50 kg N/ha/year; B: 50 kg N/ha/year; C: 50 kg N/ha/year; D: –
2nd fertilisation – A: 50 kg N/ha/year; B: 25 kg N/ha/year; C: 25 kg N/ha/year; D: –
3rd fertilisation – A: 50 kg N/ha/year; B: –; C: –; D: –
Because the measurements were taken four times a week, the emissions could be studied with a sufficient temporal resolution at different crop sites. Except during the few freeze-thaw cycles in the course of the winter season, the N₂O emission rate usually dropped to less than 30 µg N₂O/m²/h between October and March.

No clear frost-induced emission rates were found during the winter seasons of 1999/2000, 2004/2005, and 2006/2007. Frost-induced N₂O-emissions are related to the course of temperature and could be dependent on several factors such as groundwater level, water-filled pore space, soil pH, soil nitrate content, soil texture, and soil structure (Mogge et al. 1996; Flessa et al. 1998; Röver et al. 1998; Teepe et al. 2001, 2004). However, the frost-induced emissions we measured at a couple of sites are small compared to the total annual N₂O emission budget from the sandy soil of the experimental field. Therefore, these emissions were not excluded from the calculation of the nitrogen conversion factor.

There have been several high emission periods at the fertilised sites within the course of the measurements since 1999. The highest emission rates of more than 1000 µg N₂O/m²/h were observed in 2001, 2002, and 2006 (Figure 3). The high N₂O emission rates in 2001 were measured at the poplar site with the fertilisation level of 150 kg N/ha/year over a period from July till October (Figure 4). Similarly high N₂O emissions occurred at several poplar plots in 2006, just after the harvest (cutting of short rotation wood) and fertilisation (Figure 5). In 2002, rye and rape sites had high N₂O emissions and in 2006, enhanced emissions were observed at the sites with annual and perennial rye as well. Longer lasting high N₂O emissions, called “hot spots” or

Table 3. Mean annual N₂O-N emissions (in kg N₂O-N/ha/year) and mean nitrogen conversion factor (in %)

<table>
<thead>
<tr>
<th>Year</th>
<th>N₂O-N flux from fertilised sites*</th>
<th>N₂O-N flux from nonfertilised sites*</th>
<th>Conversion factor*</th>
<th>Conversion factor**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>0.96</td>
<td>0.74</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>2000</td>
<td>1.28</td>
<td>0.86</td>
<td>0.32</td>
<td>0.21</td>
</tr>
<tr>
<td>2001</td>
<td>1.50</td>
<td>0.73</td>
<td>0.64</td>
<td>0.50</td>
</tr>
<tr>
<td>2002</td>
<td>2.75</td>
<td>1.68</td>
<td>1.01</td>
<td>0.96</td>
</tr>
<tr>
<td>2003</td>
<td>1.55</td>
<td>0.89</td>
<td>0.65</td>
<td>0.62</td>
</tr>
<tr>
<td>2004</td>
<td>1.29</td>
<td>0.45</td>
<td>0.82</td>
<td>0.71</td>
</tr>
<tr>
<td>2005</td>
<td>1.16</td>
<td>0.57</td>
<td>0.55</td>
<td>0.48</td>
</tr>
<tr>
<td>2006</td>
<td>3.46</td>
<td>1.30</td>
<td>2.20</td>
<td>1.64</td>
</tr>
<tr>
<td>2007***</td>
<td>1.60</td>
<td>0.59</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>1999–2007</td>
<td>1.73</td>
<td>0.87</td>
<td>0.82</td>
<td>0.70</td>
</tr>
</tbody>
</table>

* N₂O hot spots included; ** N₂O hot spots excluded; ***2007: Results till November 26
“hotspots” (e.g. Christensen et al. 1990; Röver et al. 1999; Wanga et al. 2006), were detected at the fertilised sites only. Besides the highly emitting N$_2$O hot spots with maxima above 1000 µg N$_2$O/m2/h in 2001, 2002, and 2006, one or two less emitting N$_2$O hot spots with maxima above 100 µg N$_2$O/m2/h were also observed in all other years of this study, except in 1999. These lower N$_2$O hot spots occurred usually in late summers and autumns. The reason for these high emissions is not clear. High emissions after harvesting had been observed several times and might be connected with soil distortions.

When determining the nitrogen conversion factor, the question arose, which part of the time course should be chosen, a period of few weeks after fertilisation or the whole plant-growing period or the corresponding year. Additionally, different results will be obtained in the dependence on the method of the calculation of the conversion factor like the determination of the background flux (Bouwman 1996; Simojoki & JaaKola 2000; Model & HelLebrand 2006), including or excluding N$_2$O hot spots, taking the annual mean of daily differences between the fertilised and non-fertilised sites, or taking the difference between the fertilised and non-fertilised sites in annually cumulated N$_2$O fluxes. The results, presented here, are based upon the differences between the annual means of site-specific N$_2$O fluxes. In order to evaluate the influence of N$_2$O hot spots, both possibilities – including and excluding N$_2$O hot spots – are considered (Tables 3 and 4). It is reasonable to exclude N$_2$O hot spots in the calculation of the conversion factor, since the sources of these N$_2$O hot spots are unknown and apparently seem not to be directly connected with the fertilisation level. On the other hand, N$_2$O hot spots were observed at fertilised sites only. Thus, a more detailed analysis and discussion must be given to this question. Therefore, the influence of the calculation methods and the choice of periods and emission data will be discussed elsewhere.

There is an obvious difference between total annual N$_2$O emission rates and nitrogen conversion factors from the sites without soil cultivation (columns 1–5) and those of cultivated soils (columns 6–10; Table 1 and Table 4). The emissions from sites
Dedicated to the 80th Anniversary of Prof. Radoš Řezníček

Table 4. Mean N_2O-N emissions (in kg N_2O-N/ha/year) and mean nitrogen conversion factor (in %)

<table>
<thead>
<tr>
<th>Sites with non-cultivated soil</th>
<th>N_2O-N flux from fertilised sites*</th>
<th>N_2O-N flux from non-fertilised sites*</th>
<th>Conversion factor*</th>
<th>Conversion factor**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grass</td>
<td>1.17</td>
<td>1.06</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Willow</td>
<td>0.99</td>
<td>0.56</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>Poplar</td>
<td>1.42</td>
<td>0.50</td>
<td>0.89</td>
<td>0.65</td>
</tr>
<tr>
<td>Mean</td>
<td>1.19</td>
<td>0.71</td>
<td>0.48</td>
<td>0.40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sites with cultivated soil</th>
<th>N_2O-N flux from fertilised sites*</th>
<th>N_2O-N flux from non-fertilised sites*</th>
<th>Conversion factor*</th>
<th>Conversion factor**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rye</td>
<td>2.00</td>
<td>0.95</td>
<td>0.97</td>
<td>0.89</td>
</tr>
<tr>
<td>Per. Rye***</td>
<td>2.98</td>
<td>1.32</td>
<td>1.54</td>
<td>1.50</td>
</tr>
<tr>
<td>Triticale</td>
<td>1.75</td>
<td>0.74</td>
<td>1.04</td>
<td>0.92</td>
</tr>
<tr>
<td>Hemp</td>
<td>1.02</td>
<td>0.67</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>Rape</td>
<td>2.50</td>
<td>1.40</td>
<td>0.92</td>
<td>0.62</td>
</tr>
<tr>
<td>Mean</td>
<td>2.05</td>
<td>1.02</td>
<td>0.96</td>
<td>0.85</td>
</tr>
</tbody>
</table>

* N_2O hot spots included; ** N_2O hot spots excluded; *** Last soil cultivation in autumn 2005 (see Table 1, columns 5–7, period 10/2005–19/2007)

with cultivated soils were about twice those from soils at columns 6 to 10. It is to remark that difficulties arise if the conversion factors of different plant types are to be evaluated using data from different years. One main problem with the comparison is the variability of the weather conditions which causes

Figure 5. Time series of N_2O emissions from poplar sites of the experimental field; fertiliser induced N_2O emissions are indicated by arrows (○); fertilisation data are given in Table 2; “Right measuring spots” at poplar sites of column 4 (Figure 1 and Table 1) with three fertilisation levels (150 kg N/ha per year, 75 kg N/ha/year, 0 kg N/ha per year); the N_2O emissions from sites with a fertilisation rate of 75 kg N/ha/year in Figure 5 part b (measurements of 2006) are assigned to an N_2O hot spot

(a) Measuring period 1999–2007; (b) Measuring period 2006
different N₂O emission levels in the dependence on the precipitations and temperature of the year considered. Nevertheless, the soil cultivation obviously enhances the N₂O emission level. Although this phenomenon is not fully understood, the changes in physical structure caused by the soil tillage may alter biological activity and thus N₂O emissions over the crop season (Mulvaney et al. 1997; Kaiser et al. 1998; Kaiser & Ruser 2000; Jackson et al. 2003).

CONCLUSIONS

N₂O flux measurements, having been carried out for nine years, showed periodical variations. Whereas in the course of autumns and winters the emissions were comparatively low (below 30 µg N₂O/m²/h), the N₂O fluxes had peaks above 100 µg N₂O/m²/h after nitrogen fertilisation in springs. In summers and autumns, increased N₂O flux rates were observed with several fertilised sites. N₂O hot spots caused a measurable increase of the annual N₂O emission budget. As N₂O hot spots were found on fertilised sites only, they might cause increased nitrogen conversion factors, if not excluded from the calculation of the fertiliser induced emissions. The emissions due to the freezing-thawing periods in winters did not considerably contribute to the annual N₂O budget and thus do not have a measurable influence on the nitrogen conversion factor. The mean nitrogen conversion factor of about 0.8% is comparatively low. Therefore, the energy crop production on sandy loam soils under climatic condition of Central Europe will not lose their CO₂ advantage by nitrogen fertilisation as long as fertilising results in an adequately higher biomass yield (Scholz & Ellerbrock 2002).

The nitrogen fertilisation, precipitations and soil cultivation altered N₂O emissions from the soil. Fertiliser induced N₂O emissions from cultivated soils are higher as compared to non-cultivated soils. As an explanation, it is assumed that tillage and other soil treatments change the soil structure and thus influence the water filled space as well as the soil-air exchange rate. The influence of tillage and plant varieties on N₂O emissions needs further investigations in various crop systems.

References

fertilized with nitrate: effect of compaction, soil moisture and rewetting. Soil Biology & Biochemistry, 38: 263–274

Received for publication November 27, 2007
Accepted after corrections March 7, 2008

Corresponding author:
Prof. Dr. rer. nat. habil. HANS JÜRGEN HELLEBRAND, Leibniz Institute for Agricultural Engineering Potsdam-Bornim (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany
tel.: + 49 331 5699 212, fax: + 49 331 5699 849, e-mail: jhellebrand@atb-potsdam.de

Abstrakt

Od r. 1999 byl měřen plynovou chromatografií tok emisí kysličníku dusného z půdy experimentálních pozemků. Hlavním cílem této studie bylo učinit faktoru dusíkové konverze a jeho variabilitu pro písečné půdy v podmínkách střední Evropy. Jednoleté rostliny (konopí, řepka, žito, čirok, triticale) a víceleté rostliny (tréva, trvalé žito, topol, vrba) byly hnojeny ve třech různých hladinách dusíku (150 kg N/ha/rok, 75 kg N/ha/rok, nehnojeno). Roční faktor dusíkové konverze byl odvozen z ročních průměrům rozdílů mezi hnojenými a nehnojenými kontrolními místy. Získané hodnoty byly nižší pro neobdělávaná místa (s víceletými plodinami – 0,9 %) než u řádně obdělávaných ploch (jednoleté plodiny – 0,9 %). Několikanásobné zvýšené N₂O aktivní body s maximy nad 1000 µg N₂O/m²/h s dobou trvání několika týdnů byly pozorovány během měření. Je diskutován vliv těchto lokálních emisních vrcholů na velikost faktoru dusíkové konverze.

Klíčová slova: hladina hnojení dusíkem; půdní tok N₂O; obdělávané a neobdělávané půdy; víceleté rostliny a jednoleté rostliny.