Effects of mesquite (Prosopis laevigata) pods as a potential feed material for kids

Luz Pena-Avelino¹, Ivonne Ceballos-Olvera¹, Jorge Alva-Perez¹, Jorge Vicente², Juan Pinos-Rodriguez²*

¹Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, México
²Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, México
*Corresponding author: jpinos@uv.mx

Abstract: To evaluate the dietary inclusion of mesquite pods (Prosopis laevigata) on the growth performance, rumen fermentation, nitrogen balance, blood metabolites and carcass traits, 15 Creole goat kids (12.1 ± 2.8 kg body weight) were randomly assigned to one of three experimental diets with 0, 300 and 600 g of mesquite pods (dry matter basis). The study lasted 80 days. At the end of this period, the blood and ruminal fluid were sampled and the nitrogen (N) balance was calculated. The growth performance and feed intake were not affected by the mesquite pods. The nitrogen digestibility, N absorbed, and N retained increased linearly (P < 0.05) with the increasing amounts of mesquite pods in the diet. The serum glucose and triglycerides were not affected by the mesquite pods, but the creatinine and uric acid decreased linearly (P < 0.05) as the mesquite pods increased in the diet. The highest (P < 0.05) rumen pH value, ammonia-N concentration, molar proportion of the acetate and the acetate : propionate ratio was found in the goat kids fed the diet with 600 g when compared to those fed diets with 0 and 300 g mesquite pods. Beneficial dietary effects of mesquite pods on the blood metabolites and N retention of the goat kids were found in this study; therefore, the dietary inclusion of mesquite pods at 600 g/kg can be used as a feed alternative for growing goat kids.

Keywords: Capra aegagrus hircus; blood metabolites; feed intake; N excretion; rumen fermentation
studies that evaluate the effect of 600 g of mesquite pods/kg DM on growing goat kids. We hypothesised that with the correct formulation, mesquite pods can replace conventional grains with no negative effects on the health and performance of the growing goat kids. Therefore, the objective of this study was to evaluate the dietary inclusion of mesquite pods on the growth performance, blood metabolites, rumen fermentation characteristics, N balance and carcass traits of goat kids.

MATERIAL AND METHODS

The experiment protocols, under the supervision and approval (NOM-062-ZOO-1999) of the Academic Animal Welfare Committee of the Universidad Autónoma de Tamaulipas, were conducted in compliance with the Animal Protection Law enacted by Mexico.

Pods, diets and animals

Mesquite pods were obtained from a goat farmer during the summer in Cerritos, San Luis Potosí, Mexico (22°25'48.5''N and 100°18'22''W). The vegetation is mainly xerophytic shrubland dominated by *Yucca filifera* Chab. and *Larrea tridentata* DC Coville. The pods were air dried and passed through a rotating blade forage chopper to reduce the length to 1 cm before mixing into the diets to ensure the proper mixing of the feed ingredients. Fifteen weaned male Creole goats averaging 80 days old and 12.1 ± 2.8 kg body weight (BW) were randomly assigned to one of three experimental diets (5 Creole goats per treatment) in a completely randomised design. The experimental diets contained 0, 300 and 600 g of mesquite pods per kg of diet (dry matter basis), respectively. The nutritional regimes were formulated to replace conventional feedstuffs and maintain similar protein and energy values for growing male goats (NRC 1981). The market price (Table 1) was calculated based on the 2018 prices of the diet ingredients. A total mixed ration diet was offered *ad libitum* to all the goats with free access to fresh water during the study. The residual feed was collected and weighed to record the daily consumption of the dry matter. The feeders always added 10% of the daily surplus food in accord with the intake of each of the animals.

Growth performance and N balance

Table 1. The ingredients and chemical composition of the mesquite diet

<table>
<thead>
<tr>
<th>Mesquite pods (g/kg DM)</th>
<th>0</th>
<th>300</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingredients (g/kg DM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corn maize</td>
<td>630</td>
<td>404</td>
<td>195</td>
</tr>
<tr>
<td>Corn stove¹</td>
<td>207</td>
<td>125</td>
<td>26</td>
</tr>
<tr>
<td>Mesquite pods²</td>
<td>0</td>
<td>300</td>
<td>600</td>
</tr>
<tr>
<td>Soybean meal (440 g/kg CP)</td>
<td>162</td>
<td>170</td>
<td>178</td>
</tr>
<tr>
<td>Mineral vitamin premix³</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chemical composition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry matter (g/kg)</td>
<td>935</td>
<td>952</td>
<td>939</td>
</tr>
<tr>
<td>Crude protein (g/kg)</td>
<td>147</td>
<td>150</td>
<td>151</td>
</tr>
<tr>
<td>Ash (g/kg)</td>
<td>69</td>
<td>62</td>
<td>54</td>
</tr>
<tr>
<td>Neutral detergent fibre (g/kg)</td>
<td>237</td>
<td>247</td>
<td>263</td>
</tr>
<tr>
<td>Acid detergent fibre (g/kg)</td>
<td>158</td>
<td>153</td>
<td>190</td>
</tr>
<tr>
<td>Metabolisable energy (MJ/kg)⁴</td>
<td>12.5</td>
<td>12.1</td>
<td>12.1</td>
</tr>
<tr>
<td>Market price (US$/ton)</td>
<td>249</td>
<td>220</td>
<td>191</td>
</tr>
</tbody>
</table>

¹Chemical composition: dry matter: 888 g/kg; crude protein: 48 g/kg DM; neutral detergent fibre: 752 g/kg DM; acid detergent fibre: 390 g/kg DM; ash: 49 g/kg DM; metabolisable energy: 7.5 MJ/kg; ²Chemical composition: dry matter: 950 g/kg; crude protein: 70 g/kg DM; neutral detergent fibre: 336 g/kg DM; acid detergent fibre: 211 g/kg DM; ash: 44 g/kg DM; metabolisable energy: 12.1 MJ/kg; ³Composition per kg: Se 10 mg; K 215 mg; Fe 50 mg; Co 20 mg; Zn 50 mg; Mn 1 600 mg; Cu 300 mg; I 70 mg; Ca 220 mg; P 280 mg; S 30 mg; salt 845 mg; urea 102 mg; vitamin A 150 IU/kg; vitamin D25 MIU/kg; vitamin E 150 IU/kg; lasalocid 1.3 g/kg; ⁴ME = metabolisable energy; calculated using NRC (1981)

The experiment lasted for 80 days preceded by an adaptation period of 12 days. On arrival, the initial BW was recorded. The goats were housed in individual shaded pens (1.0 m × 0.90 m) and fed diets twice a day (08:00 and 15:00 h). The animal weight was measured initially, then every ten days, before the morning feeding throughout the experiment. The total weight gain was calculated by subtracting the initial BW from the final BW. The average daily gain (ADG) was determined by the total BW increase divided by the duration of the trial. The feed conversion ratio (FCR) was calculated as the amount of feed consumed divided by the total weight gain.

The pods and feed samples were dried at 55 °C to a constant weight for the DM determination.
and ground in a Wiley mill to pass through a 1 mm screen. The samples were assayed in triplicate for the DM, crude protein (CP) (N × 6.25) and ash content according to the Association of Agricultural Chemists (AOAC 2006). The neutral detergent fibre [NDF; Mertens (2002)] and acid detergent fibre (ADF) were determined by the Van Soest et al. (1991) method and analysed using a fibre analyser (Ankom A200, Ankom Technology, Macedon, NY, USA) with filter bags (Ankom F-57). For the NDF analysis, the samples were treated with α-amylase (Sigma A-3403; Sigma-Aldrich®, St. Louis MO, USA), and the neutral detergent solution contained sodium sulphite. The residues were not corrected for the residual ash. All the diets were formulated with a similar content of protein and energy (150 g of CP/kg DM and 12.1 MJ of ME/kg DM) to meet the requirements of the growing goats (NRC 1981). The NDF and ADF contents were similar among the treatments. The market price in the diet with the level of 600 g of Prosopis laevigata pods (PLP)/kg feed lowered the feed costs by 23% (Table 1).

From day 70 to day 75, the N balance was evaluated. The daily faecal output from the goats was collected, recorded and sub-sampled (30 g/day). The faeces were analysed for the DM and N balance. The DM contents of the faecal samples were determined as described above. Urine was collected daily in plastic containers, weighed and recorded. Then, twenty ml of the sub-sample of the acidified urine (6N HCL to ensure a final pH of 3.0 or less) was frozen (−20 °C). The faecal and urine samples were analysed to determine the N balance (AOAC 2006). The difference between the N intake and N output in the faeces and urine was the measure of the N retention.

Blood metabolites

On day 79, before the diurnal feeding, blood samples were collected by jugular vein puncture. The samples were used to determine the concentrations of creatinine, glucose, urea, uric acid and triglycerides. After collection in tubes, the serum was obtained by centrifugation (1 200 × g for 20 min) and stored at −20 °C until analysis. The serum chemistry was assayed using a BA-88A Semi-Auto Chemistry Analyzer from Shenzhen Mindray Bio-Medical Electronics Co., Ltd. The serum creatinine concentrations were measured using a Spinreact creatinine kit (Creatinine-J; Spinreact, Spain). The absorbance was taken at 492 nm. The glucose was determined using the Glucose Oxidase-Peroxidase (GOD-POD kit) enzymatic endpoint method. The colour intensity was proportional to the glucose concentration in the sample, measured at 500 nm. The serum urea was determined using the Spinreact urea LQ kit (Urea LQ; Spinreact, Spain) at 340 nm. The uric acid was measured using an enzymatic colorimetric test kit from Spinreact SA (Uric acid-LQ uricase-POD™ by Spinreact, Spain) following the manufacturer’s instructions. The red dye formed was measured at 520 nm. The cholesterol concentration was measured according to the manufacturer’s instructions (GPO-POD, enzymatic colorimetric; Spinreact, Spain). The colour intensity was proportional to the triglyceride concentration in the sample, measured at 500 nm.

Ruminal fermentation indicators

The ruminal fluid samples were collected after slaughter, and the pH was recorded immediately using a pH meter (Hanna Instruments, Inc, Romania). The samples were acidified with 6N HCL, then cooled (4 °C) for 30 min and centrifuged (25 000 × g; 4 °C for 20 minutes). The supernatant fluid samples were kept and frozen for further analysis. NH3-N was determined by the McCullough method (McCullough 1967) using a spectrophotometer of UV-VIS. The volatile fatty acid (VFA) concentration was determined according to Erwin (1961) using a gas chromatograph with a flame ionisation detector (6890N; Agilent Technologies Systems, USA).

Carcass traits

On day 81, goats were sacrificed to evaluate the carcass characteristics. The animals were processed using standard slaughter procedures (NOM-033-SAG/ZOO 2014) described by Colomer-Rocher et al. (1987). After slaughter, the dressed carcass was comprised of the body after removing the skin, the head (at the atlanto-occipital joint), the forefeet (at the carpal-metacarpal joint), and the hind feet (at the tarsal-metatarsal joint). The hot carcasses were weighed and then refrigerated for 24 h at 4 °C for
the cold carcass weight. The reirrigation losses were calculated as the carcass shrinkage loss as described by Zimerman et al. (2008). The dorsal fat was measured using a digital calibrator (Mituyo, UK) 4 cm from the spinal column at the level of the 12th rib. The full rumen and intestines as well as visceral organs were weighed after slaughter.

Statistical analysis

In all the evaluations, five goats were used per treatment using a completely randomised experimental design. The MIXED model (SAS 2002) was used to analyse the data; the goats were the random component, and the mesquite pod levels were the fixed components. The body weight changes, feed intake, average daily gain and feed conversion were analysed with the same model, except that the time (repeated) and interaction time \times mesquite pod level were included in the model. The level of mesquite pods in diets was partitioned into linear and quadratic contrasts. Comparisons of the least square means were conducted using the PDIFF option with a Tukey adjustment. The covariance structure that resulted in the lowest Akaike’s information was heterogeneous autoregressive (AR). The differences were considered significant when \(P < 0.05 \).

RESULTS

The initial average body weight was similar among the treatments, and there were no differences in the final body weight (BW), total gain, average daily gain, dry matter intake and feed conversion. The carcass traits and non-carcass components were not affected by the dietary mesquite pods (Table 2).

The blood serum glucose and triglycerides were not affected by the experimental diets. The serum creatinine and uric acid decreased linearly \((P < 0.05)\) as the PLP level increased in the diet. The kids fed the diet with 600 g of mesquite pods had higher blood urea concentrations than the kids fed diets with 0 or 300 g of mesquite pods (Table 3). The rumen fermentation indicators, except for butyrate, were affected by the experimental diets. The highest ruminal pH values \((P < 0.05)\), ammonia-N concentrations \((P < 0.01)\), acetate molar proportion \((P < 0.001)\) and acetate : propionate ratio \((P < 0.01)\) were found in the goat kids fed the diet with 600 g when compared with those found in the kids fed 0 and 300 g of mesquite pods. The total volatile fatty acids concentration \((P < 0.05)\) and propionate molar proportion \((P < 0.01)\) decreased linearly as the mesquite pod levels decreased in the diet (Table 4).

| Table 2. The growth performance and carcass and non-carcass components of the finishing Creole goats fed diets containing the mesquite pods |
|---|---|---|---|---|
| **Mesquite pods** | **SEM** | **P-value** |
| (g/kg DM) | linear | quadratic |
| **Initial body weight (kg)** | 12.0 | 11.7 | 12.6 | 2.81 | 0.23 | 0.35 |
| **Final body weight (kg)** | 22.2 | 20.9 | 22.0 | 5.77 | 0.70 | 0.55 |
| **Total weight gain (kg)** | 10.2 | 9.2 | 9.4 | 3.62 | 0.13 | 0.83 |
| **Average daily gain (kg)** | 0.127 | 0.115 | 0.117 | 0.045 | 0.13 | 0.84 |
| **Dry matter intake (kg/d)** | 0.604 | 0.608 | 0.615 | 0.038 | 0.18 | 0.80 |
| **Feed conversion** | 4.7 | 5.2 | 5.2 | 1.03 | 0.26 | 0.49 |
| **Hot carcass (kg)** | 10.5 | 10.0 | 10.1 | 2.411 | 0.64 | 0.89 |
| **Cold carcass (kg)** | 9.5 | 9.2 | 9.6 | 2.190 | 0.51 | 0.83 |
| **Hot carcass dressing (%)** | 48.5 | 47.8 | 48.9 | 2.23 | 0.75 | 0.85 |
| **Cold carcass dressing (%)** | 42.8 | 44.0 | 43.6 | 2.09 | 0.79 | 0.87 |
| **Carcass shrink loss (%)** | 11.7 | 7.9 | 10.8 | 1.27 | 0.36 | 0.54 |
| **Dorsal fat at 12th rib (mm)** | 0.79 | 0.70 | 0.75 | 0.11 | 0.48 | 0.79 |
| **Full rumen and intestines (kg)** | 4.7 | 4.3 | 4.3 | 0.97 | 0.51 | 0.68 |
| **Visceral organs\(^1\) (kg)** | 7.0 | 6.6 | 7.6 | 0.82 | 0.71 | 0.59 |

\(^{1}\)blood, skin, head, legs, heart, spleen, lungs, oesophagus, liver, penis and testicles
DISCUSSION

Our results indicated that dietary mesquite pods at 600 g/kg of DM did not induce negative effects on the growth performance, feed intake, or carcass traits. Although previous studies indicated the positive effects of dietary mesquite pods on the growth
performance of goats and sheep, most of them considered the dietary replacement of the forages by mesquite pods (Ravikala et al. 1995; Mahgoub 2005b; Obeidat et al. 2008; Felker et al. 2013). As indicated by Pena-Avelino et al. (2014), mesquite pods had a fat content and fatty acid profile, sugar profile, crude protein content, and degradation rate similar to conventional grains such as maize, wheat and sorghum. Mesquite fruits contain more fibre than conventional grains, but less roughage and by-products than maize stover, wheat straw, cotton seed or wheat bran. Mesquite fruits have been used to replace forages, by-products, conventional grains and commercial concentrates in experiments that did not consider their unique properties when formulating diets (e.g., Mahgoub et al. 2005b; Andrade-Montemayor et al. 2011). Our study considered the reformulation of the experimental diets, which did not greatly differ in the crude protein and energy content. The same studies reported that the feed intake could be reduced by the addition of mesquite pods due to the phenolic components that suppress the appetite, although diets with mesquite pods are more palatable than conventional grains, which did not greatly differ in the crude protein and energy content. The same studies reported that the feed intake could be reduced by the addition of mesquite pods due to the phenolic components that suppress the appetite, although diets with mesquite pods are more palatable than conventional grains, which did not greatly differ in the crude protein and energy content.

The blood creatinine concentrations found in the Creole goat kids remained within the physiological range of 0.08–0.160 mmol/l (Cook et al. 2008). Wang et al. (2016) observed that the starch type affected the blood profile in goats, where the creatinine decreased as the amylose proportion reduced in the diet. Likewise, Giovannetti et al. (2008) reveals that Prosopis pods contain a low amount of starch compared with maize grains. The serum glucose concentrations had a normal range of 4.16–8.32 mmol/l (Wolfensohn and Lloyd 2013). Cook et al. (2008) obtained values of 3.42–3.59 mmol/l in goats fed diets with mesquite pods. The blood triglycerides were within the standard range of 0.6–1.6 mmol/l for the goats (Khan et al. 2016). The blood urea-N was higher than the reference value [7.65 to 15.30 mmol/l; Kaneko et al. (2008); Jan et al. (2015)] in all the diet treatments. The fact that mesquite pods increased the blood urea-N concentrations in goats could be associated with the observed increase in the ruminal ammonia. The blood uric acid values were within the reference range (0.020–0.080 mmol/l). The mesquite pods reduced blood uric acid in the goats. The mixed feed with the different ingredients provides a greater diversity of amino acids (AA), which could promote the NH3 assimilation. The primary AA that form ammonia in the rumen are Ala, Glu, and Gln (Hackmann and Firkins 2015). Russell (1993) observed that S. bovis had a rapid growth rate of 0.9/h on the starch or sugar, stimulating the NH3 production in the rumen. It is known that Prosopis has high glucose and fructose concentrations.

The rumen pH value is determined by the total VFA concentration and buffer capacity of the rumen fluid (Li et al. 2014). The increments of the ruminal pH values by mesquite pods could be attributed to the effective fibre stimulating the chewing activity and promoting saliva production with a buffering capacity (Zhao et al. 2011; Pinho et al. 2018). Another explanation could be the differences in the degradation rate between the mesquite pods and the maize, as confirmed by Pena-Avelino et al. (2016). Maize has a higher starch level than mesquite pods, and so replacing maize with mesquite pods induced a lower molar propionate proportion in the rumen. The high ruminal NH3-N concentration induced by the mesquite pods could be related to the high concentrations of soluble carbohydrates that help to maximise the efficiency of the microbial protein synthesis in the rumen. Most of these mesquite pod effects on the ruminal metabolism could explain the improved N utilisation in the goat kids.

The concentration of NH3-N in the rumen is an indicator of the rate of the ruminal N degradation, the concentration of the rumen-degraded N above microbial needs, and the amount of the dietary energy available for the ruminal microorganisms (Li et al. 2011). It is now well established that the N retention depends on the intake of N and the amount of fermentable carbohydrates in the diet (Sarwar and Khwan 2003) such as that provided by the mesquite pods.

These results could be explained by the high ADF present in the diets with the mesquite pods that promote the low degradation of the feed in the rumen, or by the tannins present in the mesquite pods that contribute to forming complexes with protein and fibre (Negrete et al. 2016) and can escape digestion (Min et al. 2015). The results of this study indicate that Prosopis laevigata pods promoted indicators such as the nitrogen digestibility, nitrogen retention, BW gain, and carcass characteristics. Since diets with PLP are inexpensive due to the local availability, they can

https://doi.org/10.17221/106/2019-VETMED
be used to overcome the limitations of food sources in the dry tropics. More studies are needed to understand the interaction of the metabolites in this leguminous plant with other ingredients and their influence on different goat breeds and ages.

Conflict of interest

The authors declare no conflict of interest.

REFERENCES

Li Q, Gao Y, Cao Y, Feng Z, Li J. Effects of rumen-degrada-

Li F, Li Z, Li S, Ferguson JD, Cao Y, Yao J, Sun F, Wang X, Yang T. Effect of dietary physically effective fiber on ru-

Mahgoub O, Kadim IT, Johnson EH, Srikandakumar A, Al- Saqri NM, Al-Abri AS, Ritchie A. The use of a concen-

trate containing Meskit (Prosopis juliflora) pods and date palm by-products to replace commercial concentrate in diets of Omani sheep. Anim Feed Sci Tech. 2005b May; 120(1-2): 33-41.

Received: August 21, 2019
Accepted: May 15, 2020