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Soil is an important component of all terrestrial 
ecosystems, as well as a main source of production 
in agriculture and forestry. Its function is essential 
for maintenance of the global biogeochemical 
cycles for all important nutrients, and thus, the 
processes in soils affect many other components 
of ecosystems, both biotic and abiotic. To un-
derstand the functioning of soils and to prevent 
soil damage due to anthropogenic and climatic 
factors, it is important to have suitable instru-
ments for the assessment and quantification of 
soil processes performed by soil microorganisms 
and other members of the soil biota.

Microbial processes in soils catalyzed	
by enzymes

Enzymes are major components of biological 
soil processes, such as the degradation of organic 

compounds, their mineralization and the libera-
tion or recycling of nutrients including nitrogen, 
phosphorus, sulphur and other essential metals. 
The activity of hydrolytic enzymes and lignino-
lytic oxidases and peroxidases directly affects the 
rates of transformation of soil biopolymers into 
compounds that are accessible for microorganisms 
and plants. The study of enzymatic activities in 
environmental samples (soil, litter, lignocellulose 
or other matrices) is a useful tool for assessing the 
functional diversity of soil microbial communi-
ties or soil organic mass turnover (Kandeler et al. 
1999). Measuring enzyme activities in soil has a 
long tradition in connection with evaluating soil 
fertility and quantifying processes in natural and 
seminatural ecosystems with a high turnover of 
organic compounds, such as in forest and grassland 
soils. An overview of enzymes targeted in soils is 
summarized in Table 1. The list includes enzymes 
involved in the mobilization of nutrients, N, P or S, 
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from complex organic substrates and an intricate 
array of enzymes that participate in transforming 
biopolymers, including plant cell wall polymers 
such as cellulose and hemicelluloses along with 
other polysaccharides available in soils and litter. 
While the first group of enzymes is produced by a 
wide variety of soil microorganisms and some of 
them also secreted by plant roots, the production 
of several polymer-degrading enzymes is often 
ascribed to fungi (Miller et al. 1998, de Boer et 
al. 2005, Hättenschwiler et al. 2005, Steffen et al. 

2007, Baldrian 2008a, Šnajdr et al. 2008a). Some 
ligninolytic enzymes, namely Mn-peroxidase and 
lignin peroxidase, are produced exclusively by 
saprotrophic species of fungi from Basidiomycota. 
Enzyme activity measurements can thus be an 
indirect assessment of the activity of a specific 
group of microorganisms in the soil (Hofrichter 
2002, Baldrian 2008a).

Due to the effects of external disturbance on 
their activity, enzymes can serve as sensitive indi-
cators of soil quality (Dick 1994, Dick et al. 1996, 

Table 1. Overview of enzymes studied in soil and litter. Abbreviations: ABTS - 2,2'-azinobis-3-ethylbenzo-
thiazoline-6-sulfonic acid; AMC – amidomethylcoumarin; DMAB - 3,3-dimethylaminobenzoic acid; MUF 
– methylumbellyferone; pNP – p-nitrophenol; VaOH – veratrylalcohol

Process Enzyme1 EC Assay Method2 Reference

Cellulose 
degradation

endoglucanase 3.2.1.4 depolymerization E Lynd et al. (2002), Baldrian and 
Valášková (2008)

cellobiohydrolase 3.2.1.91 pNP, MUF D Lynd et al. (2002), Baldrian and 
Valášková (2008)

β-glucosidase 3.2.1.21 pNP, MUF D Lynd et al. (2002), Baldrian and 
Valášková (2008)

Degradation 
of hemicellu- 
loses

endoxylanase 3.2.1.8 depolymerization E Collins et al. (2005), Biely and 
Puchart (2006)

endomannanase 3.2.1.78 depolymerization E Collins et al. (2005), Biely and
Puchart (2006)

β-glycosidases 3.2.1.XX pNP, MUF D Collins et al. (2005); Biely and 
Puchart (2006)

esterases 3.2.1.XX pNP, MUF D Biely and Puchart (2006)

Polysaccharide 
degradation

endochitinase 3.2.1.14 depolymerization E Seidl (2008)

N-acetlyglucosaminidase 3.2.1.52 pNP, MUF D Seidl (2008)

α-glucosidase 3.2.1.3 pNP, MUF D Seidl (2008)

Lignin 
transformation

Mn-peroxidase 1.11.1.13 Mn2+, DMAB, ABTS E Hofrichter (2002)

lignin peroxidase 1.11.1.14 VaOH E Martínez et al. (2005)

laccase (phenoloxidase) 1.10.3.2 ABTS, guaiacol E Baldrian (2006)

H2O2-producing enzymes 1.1.3.XX various compounds E Martínez et al. (2005)

N acquisition

proteases 3.4.21.XX depolymerization E Rao et al. (1998)

aminopeptidases 3.4.11.XX pNP, AMC D Kilcawley et al. (2002)

urease 3.5.1.5 urea D Klose and Tabatabai (1999a)

P acquisition
phosphomonoesterase 3.1.3.1 pNP, MUF D Hayes et al. (2000)

phospohodiesterase 3.1.4.1 pNP, MUF D Hayano (1977)

S acquisiton arylsulfatase 3.1.6.1 pNP, MUF D Klose and Tabatabai (1999b)

1For more details about the properties of enzymes, refer to www.brenda-enzymes.info/ or (Schomburg and 
Schomburg 2007)

2D – direct; E – in extract
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Marx et al. 2001). This relationship is emphasized 
by the fact that changes in enzymatic activity 
are the fastest response to external disturbances 
(Vepsäläinen et al. 2001). This observation was 
confirmed by many studies on the response of 
enzymes to environmental pollution, including 
the effects of heavy metals or organic xenobiotics 
(Kandeler et al. 1999, Baldrian et al. 2000, Burns 
and Dick 2002, Effron et al. 2004, Roy et al. 2004, 
Baldrian 2008b). It was proposed that a simultane-
ous estimation of multiple enzyme activities can 
be a suitable indicator of soil microbial activity 
(Bolton et al. 1985).

Methodological considerations for measuring 
enzyme activities in soils

A variety of methods for measuring enzyme activi-
ties in soils have been proposed. The techniques often 
differ in the mode of detection (spectrophotometry, 
fluorescence, radiolabelling), the reaction condi-
tions (temperature, use of buffers, time of reaction), 
and/or in the use of a variety of reaction substrates 
for measuring the enzyme activity, even for a single 
enzyme (Tabatabai 1994, Alef and Nannipieri 1995, 
Gianfreda and Bollag 1996, Schinner et al. 1996, Burns 
and Dick 2002). Unfortunately, generally accepted 
standard procedures still do not exist.

The most widely used substrates for the quanti-
fication of a relatively large group of exo-cleaving 
hydrolases are the molecules based on p-nitro-
phenol, 4-methylumbelliferone and amidometh-
ylcoumarin. p-nitrophenol (pNP) is used for 
spectrophotometric techniques; the substrates 
exhibits a relatively low sensitivity, and the color 
reaction is inapplicable with dark or turbid samples. 
4-methylumbelliferone (MUF) and amidomethyl-
coumarin (AMC) are substrates that are utilized 
with fluorescence detection. They are highly sen-
sitive, although phenolic compounds (e.g. humic 
substances) can cause fluorescence quenching. 
Moreover, the fluorescence of MUF is strongly 
pH-dependent. The weaknesses of the methods 
using MUF or AMC can be overcome by choos-
ing a suitable set of standards. Quantification of 
endo-cleaving polysaccharide hydrolases is usually 
assayed through the production of reducing sugars 
in the reaction or by analyzing the liberation of a 
soluble dye from a dyed polymer. With oxidative 
enzymes, the appearance of a colored product is 
typically measured using spectrophotometry.

Enzyme assays are either direct, when the re-
action substrate is added to the studied system, 

or indirect, when enzymes are recovered from 
soil and assayed afterwards. A direct assay over-
comes any problems with enzyme extractability. 
A significant fraction of the enzyme is often not 
extractable from soils due to binding to soil com-
ponents like microbial biomass (Schlosser et al. 
1997, Valášková and Baldrian 2006) or abiotic soil 
material (Claus and Filip 1990, Quiquampoix et 
al. 1993). In soil with high clay content, the ex-
tractable fraction of total activity may account for 
less than a few percent of the total (Vepsäläinen 
2001). Higher extraction efficiencies were reported 
from organic-rich horizons of forest soils and in 
plant litter (Šnajdr et al. 2008b). Measurements 
in extracts are better defined biochemically, but 
they only target the extractable fractions of en-
zymes. Unfortunately, unlike most hydrolases, 
enzymes performing endocleavage of polysac-
charides (e.g. endoglucanases, endoxylanases or 
endochitinases) and oxidative enzymes can only 
be quantified in extracts. After enzyme recovery 
using extraction, desalting and dialysis should be 
performed to remove inhibitory small molecular 
mass compounds that may inhibit enzyme assay. 
These types of compounds include heavy metals 
(Baldrian and Gabriel 2002) or humic substances 
that competitively inhibit assays targeting ligni-
nolytic enzymes (Zavarzina et al. 2004).

A range of extraction buffers were proposed for 
use with soils (Lang et al. 1997, Criquet et al. 2000, 
Criquet et al. 2002, Baldrian and Gabriel 2003). 
Although some of them seem to work well with 
a wider variety of soils, when working in a single 
soil type, it is still advisable to test the extraction 
solutions with that specific soil. At minimum, the 
solutions to be tested should include phosphate 
and acetate buffers of pH 7, 0.1mM CaCl and 
distilled water.

Some authors use ‘ambient conditions’ in their 
enzyme assays, which means that the enzymes 
are tested at temperatures measured on site and 
in unbuffered solutions of substrates with the aim 
to reflect the in situ conditions and to measure 
the actual rates of enzymatic reactions (Burns 
and Dick 2002, Toberman et al. 2008). However, 
none of these techniques is able to completely 
reconstruct the local environment in terms of soil 
moisture content or osmolality, and its usefulness 
is thus questionable. It is recommended to use 
well-defined conditions in terms of pH (buffer 
composition) and temperature that result in bio-
chemically-defined reaction kinetics. This type 
of experiment allows for a comparison of results 
across studies and in soils with different properties. 
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To approximate in situ conditions, it is possible 
to research the pH and temperature profiles of 
enzyme activities for the soil of interest and to use 
the results for estimating reaction rates.

Enzyme activity is extremely variable in space, 
the spatial variability usually being composed of 
vertical and horizontal components. The vertical 
gradient of soil properties includes soil organic 
matter content and quality, microbial biomass and 
physical condition (moisture content and pH). This 
results in a spatial gradient of enzyme activities, 
which are most often decreasing with increasing 
soil depth (Trasar-Cepeda et al. 2000, Prietzel 
2001, Andersson et al. 2004, Wittmann et al. 2004, 
Baldrian et al. 2008, Šnajdr et al. 2008b). Vertical 
stratification of enzyme activities is particularly 
pronounced in highly stratified soils (forest soils) 
and less pronounced in soils under tillage (agricul-
tural soils) or in soils with high activity of mixing 
soil biota, like earthworms. Sharp gradients are 
often found even within individual soil horizons at a 
centimeter scale (Šnajdr et al. 2008b). To overcome 
the effects of spatial variation, it is important to 
collect well-defined samples in terms of soil ma-
terial (horizon) or depth (in centimeters) and to 
use composite samples. Previous studies showed 
that a set of five or six total samples, composed of 
three subsamples (soil core segments) can give the 
representative mean activity in forest or grassland 
soils (Baldrian et al. 2008, Šnajdr et al. 2008b).

In previous studies, seasonal climatic factors, 
such as temperature or soil moisture content, were 
also identified as the main factors responsible for 

observed seasonal differences (Dilly and Munch 
1996, Criquet et al. 2000, 2002, 2004, Wittmann 
et al. 2004, Niemi et al. 2005, Baldrian et al. 2008). 
This factor must be taken into account during the 
interpretation of enzyme activity data, and several 
sampling times during a season are usually needed 
to cover the annual variability of soil enzymatic 
processes. Moreover, to exclude random climatic 
effects, seasonality studies should be repeated 
during the following years.

Recommended procedure

The following procedures are recommended for 
the routine measurement of enzyme activities in 
soils, litter or similar lignocellulose materials, such 
as naturally decomposing agroresidues. These meth-
ods were tested over a relatively wide range of soils 
with varying properties, vegetation and manage-
ment practices, and they yielded satisfactory results 
(Vepsäläinen et al. 2001, Niemi and Vepsäläinen 2005, 
Baldrian et al. 2008, Šnajdr et al. 2008b).

Direct Assay. For the enzyme assays, 1 g fresh 
weight of soil is homogenized in 50 ml of 50mM 
sodium acetate buffer, pH 5.0, using an UltraTurrax 
(IKA Labortechnik, Germany) for 3 min at 8000 rev/
min in an ice bath. For more solid litter particles, 
litter must be cut into pieces before homogeniza-
tion. For the alkaline phosphomonoesterase assay, 
the reaction buffer is 0.5M tris-acetate at pH 8.0. 
When adding the reagents, the soil slurry is used 
at final dilution of 1:100.

Table 2. The enzymes determined by direct incubation of soil samples

Enzyme Substrate

β-Glucosidase 4-methylumbellyferyl-β-d-glucopyranoside

Cellobiohydrolase 4-methylumbellyferyl-N-cellobiopyranoside

β-Xylosidase 4-methylumbellyferyl-β-d-xylopyranoside

N-Acetlyglucosaminidase 4-methylumbellyferyl-N-acetylglucosaminide

α-Glucosidase 4-methylumbellyferyl-α-d-glucopyranoside

Esterase 4-MUF-acetate

Phosphomonoesterase 4-methylumbellyferyl-phosphate

Phospohodiesterase bis-4-methylumbellyferyl-phosphate

Lipase 4-MUF-heptanoate

Arylsulfatase 4-methylumbellyferyl sulfate potassium salt

Alanine aminopeptidase l-alanine-7-amido-4-methylcoumarin

Leucine aminopeptidase l-leucine-7-amido-4-methylcoumarin
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The activities of soil enzymes are assessed us-
ing specific artificial substrates (glycosynth, UK; 
Table 2) by measuring the fluorescence. Substrates 
(100 μl, in DMSO), at a final concentration of 
500μM, are added to 100 μl of diluted soil slurry 
samples in a 96-well plate in three to four replicates. 
For the background fluorescence measurement, 
100 μl of the soil slurry is combined with 100 μl 
of 4-methylumbelliferone (MUF) or 7-amino-4-
methylcoumarin (AMC) standards to correct the 
results for fluorescence quenching. The standards 
are diluted to give final concentrations of 0, 0.1, 
0.5, 1.0, 5.0, 10, 25 and 50μM in final volumes of 
200 μl (Vepsäläinen et al. 2001).

The multiwell plate is incubated at 40°C, and 
fluorescence is read after 5 min and 125 min. The 
fluorescence can be conveniently measured by any 
fluorescence reader, like the Infinite (TECAN, 
Austria), using an excitation wavelength of 355 nm 
and an emission wavelength of 460 nm (Niemi 
and Vepsäläinen 2005). The quantitative enzyme 
activities are calculated on the basis of fluores-
cence measurements. The fluorescence values, 
after subtraction of a blank, are compared with 
standard curves of MUF and AMC. If necessary, 
a substrate blank can also be used. One unit of 
enzyme activity is defined as the amount of enzyme 
forming 1μM of reaction product per min.

Enzyme extraction and measurement in ex-
tracts. The highest recovery of soil enzymes is 
usually achieved with 100mM phosphate buffer, 
pH 7.0 for soil and plant litter (Šnajdr et al. 2008a) 
or with 50mM sodium acetate buffer for specific 
lignocellulose types like wheat straw and other 
agroresidues (Lang et al. 1997). Homogenized 
samples of soil or litter material are extracted at 
4°C for 2 h on an orbital shaker (100 rpm) with 
the appropriate buffer (16:1 w/v). They are then 
filtered through Whatman # 5 filter paper and de-
salted using PD-10 desalting columns (Pharmacia, 
Sweden), according to the manufacturer’s proto-
col, to remove inhibitory small molecular mass 
compounds. The desalted samples can be stored 
at 4°C for two to three days or at –18°C for two to 
three weeks until enzyme activity analysis.

Laccase activity is measured by monitoring the 
oxidation of ABTS (2, 2'-azinobis-3-ethylbenzo-
thiazoline-6-sulfonic acid) in citrate-phosphate 
(100mM citrate, 200mM phosphate) buffer (pH 5.0) 
at 420 nm (Bourbonnais and Paice 1990). Manganese 
peroxidase (MnP) is assayed using succinate-lactate 
buffer (100mM, pH 4.5). MBTH (3-methyl-2-ben-
zothiazolinone hydrazone) and DMAB (3,3-dimeth-
ylaminobenzoic acid) are oxidatively coupled by 

the enzyme, and the resulting purple indamine dye 
is detected spectrophotometrically at 595 nm. The 
results can be corrected by the activities of samples 
without manganese (for MnP), where the manganese 
sulfate is substituted with an equimolar amount 
of ethylenediaminetetraacetate (Ngo and Lenhoff 
1980). One unit of enzyme activity is defined as the 
amount of enzyme forming 1μM of reaction product 
per min. Lignin peroxidase is usually not assayed 
in soils, which is due to the fact that the produc-
tion of this enzymes is limited to basidiomycete 
fungi growing on wood. Their presence in soil is 
not anticipated (Hildén et al. 2008).

Endoglucanase, endoxylanase, endomannanase, 
endochitinase and proteases can be easily measured 
with azo-dyed carbohydrate substrates, includ-
ing carboxymethyl cellulose, birchwood xylan, 
galactomannan (Megazyme, Ireland), azochitin or 
azocasein (Sigma, USA) following the protocols 
of the substrate suppliers. The reaction mixture 
contains 0.2 ml of 2% dyed substrate in 200mM 
sodium acetate buffer (pH 5.0) and 0.2 ml of the 
sample. The reaction mixture is incubated at 40°C 
for 20–120 min and the reaction is stopped by adding 
1 ml of ethanol followed by 10 s of vortexing and 
10 min of centrifugation (10 000 × g) (Valášková et 
al. 2007). The amount of released dye is measured 
at 595 nm, and the enzyme activity is calculated 
according to standard curves correlating the dye 
release with the release of reducing sugars.

Hydrolytic enzymes in extracts can be essen-
tially measured using the same method as soil 
homogenate samples (see above). Alternatively, 
cellobiohydrolase, β-glucosidase, β-xylosidase 
and N-acetylglucosaminidase can be assayed us-
ing p-nitrophenyl-β-d-cellobioside p-nitrophenyl-β 
-d-glucoside, p-nitrophenyl-β-d-xyloside and p-ni-
trophenyl-N-acetyl-β-d-glucosaminide, respectively. 
The reaction mixture contains 0.16 ml of 1.2mM 
PNP-substrate in 50mM sodium acetate buffer (pH 
5.0) and 0.04 ml of the sample. Reaction mixtures 
are incubated at 40°C for 20–120 min. The reac-
tion is stopped by adding 0.1 ml of 0.5M sodium 
carbonate, and the absorbance is read at 400 nm 
(Valášková et al. 2007).

Acid phosphatase and arylsulfatase are assayed 
using 2 g/l p-nitrophenylphosphate or 50mM ni-
trophenylsulfate in 50 mM sodium acetate buffer 
(pH 5.0) (Tabatabai and Bremner 1970, Šnajdr et 
al. 2008a). One unit of enzyme activity is usually 
defined as the amount of enzyme releasing 1μM 
of p-nitrophenol per min. The p-nitrophenol-based 
assays can also be adopted for direct incubations 
under similar conditions (Baldrian et al. 2008). 
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However, the soils with a high content of organic 
matter interfere with the assay due to the release of 
soluble colored substances, and the sensitivity of this 
method is lower than that based on 4-methylumbel-
liferone by at least one order of magnitude.

Other methods targeting microbial processes 
in soils

In addition to a direct analysis of enzyme ac-
tivities, enzymes are also involved in processes 
assayed using substrate-induced respiration. In 
this method, a substrate is added to soil, and pro-
duction of CO2 or consumption of O2 is meas-
ured. Mineralization of polymeric substrates can 
only be achieved by the action of extracellular 
enzymes (Alef and Nannipieri 1995). Recently, a 
convenient multiwell plate system was developed 
for the simultaneous measurement of substrate-
induced respiration of numerous substrates at 
once. The assay can be used with both standard and 
radiolabeled compounds (Chapman et al. 2007). 
Enzymes are also targets of physiological profiling 
methods of soil communities based on substrate 
oxidation, such as the Biolog™ system (Garland 
and Mills 1991). However, this process is based 
on selection and cultivation of a subpopulation of 
utilizers of individual test compounds, and results 
relate more to the potential than to the actual 
rate of an in situ process. Moreover, it seems to 
be better suited for the study of individual micro-
bial isolates compared to complex communities 
(Garland and Mills 1991, Preston-Mafham et al. 
2002). Another physiological profiling device, the 
ApiZym™ system, is directly oriented to enzyme 
activities, but its applicability is limited solely to 
individual isolates of microorganisms. It has not 
yet come into routine use for microbial ecology 
and is more often used for typing of clinical iso-
lates (Gruner et al. 1992).

Molecular methods may qualitatively target 
the abundance of enzyme-encoding genes (DNA 
analysis) or transcribed sequences (mRNA anal-
ysis). These approaches have been combined, 
for example, in the study of laccase sequences in 
hardwood forest soils (Luis et al. 2005a, Luis et 
al. 2005b). Cloning of PCR transcripts or micro-
arrays containing target sequences are typically 
used in combination with DNA or RNA extraction. 
Microarrays targeting sequences for functional 
genes, the GeoChip, have come into use during 
the last few years, and they tend to target several 
thousands of functional genes that also cover a 

significant portion of enzyme-catalyzed proc-
esses (He et al. 2007). Quantitative PCR of gene 
sequences or mRNA transcripts was recently used 
for quantification of some enzyme-encoding genes, 
including phenoloxidase-laccase (Hassett et al. 
2009, Lauber et al. 2009). However, the connection 
between transcript or gene copy level and enzyme 
activity is indirect and is biased by genes encod-
ing inactive molecules. Proteomic methods would 
definitely represent a suitable tool for a direct study 
of enzymes and their properties. However, they are 
still limited to qualitative analyses and are mostly 
reduced to in vitro cultures since soil seems to 
be much too complex for routine use. In the near 
future, molecular tools should enable us to link 
the diversity and quantity of the soil nucleic acid 
pool that encodes for enzymes with the identity 
of their producers, and these data will hopefully 
increase our understanding of the participation 
of individual microbes in the transformation of 
nutrients in soils.
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