Effects of garlic genotype on cloves formation under *in vitro* conditions

H. Fišerová, T. Vyhnánek, Z. Staňková, V. Kozák, M. Klemš, L. Havel

Department of Plant Biology, Faculty of Agronomy, Mendel University in Brno, Brno, Czech Republic

Abstract

Prior to the transfer of multiplicated garlic plants from *in vitro* to *ex vitro* conditions it is necessary to induce the formation of bulbs and to verify the identity of propagated young individuals with their maternal plant. This study deals with effects of exogenous compounds (i.e. paclobutrazol, abscisic acid and ethylene) on formation of bulbs of four garlic cultivars (Lan, Lukan, Emilie, Japo) and on production of ethylene and carbon dioxide (CO$_2$). In the softneck garlic cv. Emilie, the exogenous application of paclobutrazol increased numbers of daughter cloves and production of both ethylene and CO$_2$. In the softneck cv. Lukan the formation of cloves was higher after the application of ABA than after the application of paclobutrazol (PP 333). An exogenous application of ethylene inhibited the formation of bulbs. Analyses of DNA polymorphism, performed by means of microsatellite markers, verified the identity of bulbs produced under *in vitro* conditions with their mother plants. The hardneck cv. Lan differed form softneck cvs Lukan, Emilie and Japo.

Keywords: paclobutrazol; abscisic acid; 2-chlorethylphosphonic acid; ethylene; microsatellites

In the Czech Republic, the need of garlic production is still very actual because consumers are not interested in products of a dull taste and a short shelf life (i.e. storability) that are imported from abroad. Under climatic conditions of the Czech Republic, garlic (*Allium sativum* L.), a species belonging to the onion genus *Allium*, does not produce seeds. Flower stems with bulbils and sterile flowers formed by hardneck garlic develop on plants belonging to the group of softneck garlic cultivars only under extreme conditions. The most important problem of Czech garlic production is to obtain sufficient amounts of virus-free planting material of good quality. This problem can be solved by means of vegetative propagation and sanitation of plants under *in vitro* conditions on the basis of a good knowledge of physiological growth reactions of individual cultivars – genetic origin, external conditions, potential propagation *in vitro*, gas production etc.

The first studies on *in vitro* propagation of garlic (*Allium*) plants were focused on effects of different concentrations of N6-benzyladenine (BA) and 1-naphthyl acetic acid (NAA) in the medium on formation of young plants from flower heads and stem base (Novák, Havel 1981). In cloned, vegetatively propagated leek plants, no morphological and cytological changes were observed and it was possible to transfer and cultivate them under *in vivo* conditions. Another study published by these two authors (Havel, Novák 1988) deals with *in vitro* propagation and the establishment of garlic primary cultures from root segments of 8 garlic cultivars on the Murashige-Skoog medium con-
Garlic multiplication and estimation of gaseous markers. Primary garlic tissue cultures were established using apical meristems of garlic cloves (Havel, Novák 1988). Multiplicated garlic plants of the hardneck cv. Lan and softneck cvs Lukan, Emilie and Japo were cultivated on the MS (Murashige, Skoog 1962) medium containing 0.5 mg/l of iP and 0.2 mg/l 1-NAA and supplements paclobutrazol (0.5 mg/l), and/or ABA (0.2 mg/l) or CEPA (1%). One millilitre of 1% Florimex (active substance is CEPA) was added into a glass vial placed in the cultivation vessel containing the basal MS medium (Fig. 1). In this cultivation vessel, germinating plants released higher concentrations of ethylene from CEPA and showed an exogenous effect of plants cultivated in the aforementioned vessels that were closed with caps enabling the sampling of released gases through a septum. The obtained samples were thereafter analysed by gas chromatography (Fišerová et al. 2001, 2008; Prokeš et al. 2006). Results from 9 repetitions on the cultivar were averaged, mean error calculated and graphically processed by Microsoft Excel 2010.

DNA analysis. Genomic DNA was isolated from young first foliage leaves using the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany). Altogether six
SSR markers (EU909133, EU909134, EU909135, EU909136, EU909137, and EU909139) were analysed. Primer sequences and reaction conditions were used according to Ma et al. (2009). The reaction mixture, electrophoresis by polyacrylamide gel, and visualization with silver staining (0.2% AgNO₃) were used according to Vyhnánek et al. (2009). Subsequently, the obtained results were analysed by means of the statistical software FreeTree, version 9.1 (Hampl et al. 2001) using the UPGMA (Unweight Pair Group method with Arithmetic Mean) clustering method and the Jaccard coefficient of similarity (Jaccard 1908). The graphical expression on the matrix was performed using the software TreeView, version 1.6 (Page 1996). The individual statistical indicators (DI – diversity index, PI – probabilities of identity, and PIC – polymorphic information content) for each SSR marker were calculated according to Russell et al. (1997).

RESULTS AND DISCUSSION

Multiplication and gas production

Average number of bulbs produced in cultivation vessels after 7 weeks of cultivation on media containing exogenous growth regulators are presented in Fig. 2. Results obtained in the treatment with the hardneck cv. Lan that formed (similarly as the softneck cv. Japo) 5 to 7 bulbs, after the application of growth regulators were statistically insignificant. The effect of paclobutrazol was statistically significantly manifested in softneck cvs Lukan (Fig. 3a) and Emilie showing symptoms of poor growth (in the control treatment, 1 to 2 bulbs produced 2 to 8 bulbs in the vessel). In well growing garlic cultivars, supplements of ABA (Fig. 3b) and ethylene (Fig. 3c) reduced the formation of bulbs while in case of the poorly growing cv. Lukan the formation of bulbs was significantly increased to 3 pieces. Also Haque et al. (2000) indicates considerable differences in the in vitro cloves formation and multiplication factor for some Japanese varieties of garlic but without affecting by growth retardants.

Concentrations of ethylene and CO₂ in cultivation vessels after 7 weeks of growing, young plants are illustrated in Fig 4. In the control treatment, concentrations of ethylene were maximally 50 nl/l; this means that they were still physiologically inefficient (Burg, Burg 1968; Fišerová et al. 2010). As compared with the control, the application of paclobutrazol significantly increased concentrations of both ethylene and CO₂ in the softneck cv. Japo and the formation of bulbs was slightly lower than in control. In the poorly growing cv. Emilie, the formation of bulbs was significantly increased from 2 to 8 per vessel and the concentration of ethylene was increased as well. In case of the softneck cv. Emilie, ABA increased the concentration...
of ethylene to the end of the experiment and the concentration of CO$_2$ was high during the whole experimental period (Fig. 4b). ABA increased the formation of bulbs in the experiment with the cv. Lukan; however, the other cultivars did not respond to the addition of ABA into the medium; they did not produce any new bulbs. An exogenous application of gaseous ethylene resulting in a biological decomposition of CEPA (higher than its physiological effectiveness) caused only an increase in the number of produced bulbs in the poorly regenerating cv. Emilie (Fig. 6). In well growing cvs Lan and Japo, increased concentrations of ethylene caused only their stagnation or even mortification.

SSR markers and identity of regenerants

Due to the need of testing the genetic stability of material cultivated under *in vitro* conditions it was decided to estimate identity in individual cultivars by SSR markers. The resulting values are shown in Table 1. The same markers were used also for the assemblage of the microsatellite panel enabling an identification of Czech garlic cultivars (Ovesná et al. 2014). The size of each PCR product corresponds to the size described by Ma et al. (2009) and Ovesná et al. (2014). These lower values of individual characteristics (12 SSR markers) were caused by lower number of cultivars in our study. De Mattia et al. (2007) described similar findings in the analysis of Sardinia grapevine cultivars.

Garlic varieties have no pedigree because they are derived from plants of the regional origin and were grown spontaneously for many decades. Only the so-called *small* Japo variety is the result of wrong maintenance propagation. The so-called *great* Japo was maintained (thanks to efforts of some growers) in approximately original size. The name Japo II is used for a cultivar that is the result of sanitation of the original *small* Japo by the grower Mr. Kozák. Lukan is one of the oldest Czech varieties. Cv. Lan is the result of the breeding process and selection within the framework of registration tests as a mu-
Table 1. Characterisation of SSR markers in Czech garlic cultivars and their statistical analysis

<table>
<thead>
<tr>
<th>Locus name</th>
<th>GeneBank accession No.*</th>
<th>Size range (bp)</th>
<th>(N_a)</th>
<th>DI</th>
<th>PI</th>
<th>PIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB-ASM-040</td>
<td>EU909133</td>
<td>260–300</td>
<td>2</td>
<td>0.49</td>
<td>0.38</td>
<td>0.37</td>
</tr>
<tr>
<td>GB-ASM-053</td>
<td>EU909134</td>
<td>160–220</td>
<td>5</td>
<td>0.72</td>
<td>0.05</td>
<td>0.72</td>
</tr>
<tr>
<td>GB-ASM-059</td>
<td>EU909135</td>
<td>260–300</td>
<td>4</td>
<td>0.74</td>
<td>0.06</td>
<td>0.72</td>
</tr>
<tr>
<td>GB-ASM-072</td>
<td>EU909136</td>
<td>200–280</td>
<td>4</td>
<td>0.62</td>
<td>0.12</td>
<td>0.61</td>
</tr>
<tr>
<td>GB-ASM-078</td>
<td>EU909137</td>
<td>180–220</td>
<td>5</td>
<td>0.77</td>
<td>0.04</td>
<td>0.76</td>
</tr>
<tr>
<td>GB-ASM-109</td>
<td>EU909139</td>
<td>190–220</td>
<td>4</td>
<td>0.64</td>
<td>0.07</td>
<td>0.63</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td>4</td>
<td>0.66</td>
<td>0.12</td>
<td>0.63</td>
</tr>
</tbody>
</table>

*SSR – sequence information is available at http://www.ncbi.nlm.nih.gov/; \(N_a\) – number of alleles, DI – diversity index; PI – probabilities of identity; PIC – polymorphic information content

\[\text{Fig. 4. Concentrations of (a) ethylene (nl/l) and (b) CO}_2\text{ in cultivation vessels after 7 weeks of cultivation on the MS medium containing 0.5 mg/l of iP, 0.25 mg/l of NAA and supplements of paclobutrazol (0.5 mg/l), ABA (0.2 mg/l) and CEPA (1%) in garlic cvs Lan, Lukan, Emilie and Japo}\]
tation of the variety Slavin. Emilie is a new cultivar that originates from an unknown regional variety on the farm of Mr. Kozák and it has not passed through the process of registration, yet.

The dendrogram (Fig. 5) indicates that poorly growing softneck cvs Emilie and Lukan originate from the same genealogical branch. A distant identical origin is indicated also in well growing softneck cv. Japo. As compared with other garlic varieties, the origin of the well growing hardneck cv. Lan (resulting from breeding and selection of plants belonging to the variety Slavin) obviously differs from analysed cultivars mentioned above.

CONCLUSION

This paper presents the origin of garlic cultivars under study. As far as the formation of bulbs in individual garlic cultivars is concerned, it is not important if the plant material belongs to the group of hardneck or softneck varieties but if experimental plants show low regeneration capability (that can be improved by exogenous paclobutrazol) caused by the identic origin of evaluated varieties (as in softneck cvs Lukan and Emilie). In case of poorly growing cultivars, a supplement of ABA into the medium promotes the formation of bulbs while in those that grow well it shows an inhibiting effect. Gases produced by plants in the course of their growth signalise their growth activity. However, if the so-called physiological efficiency of these gases is trespassed, the final result may be an inhibition.

References

Received for publication June 29, 2015
Accepted after corrections December 10, 2015

Corresponding author:
Dr. Ing. HELENA FIŠEROVÁ, Mendel University in Brno, Faculty of Agronomy, Department of Plant Biology, Zemědělská 1, 613 00 Brno, Czech Republic; e-mail: hfiser@mendelu.cz