Effect of high-pressure processing and natural antimicrobials on the shelf-life of cooked ham

Markéta Adamcová¹*, Vincent van Andel¹, Jan Strohalm², Milan Houška², Rudolf Ševčík¹

¹Department of Food Preservation, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Prague, Czech Republic
²Food Research Institute Prague, Prague, Czech Republic

*Corresponding author: marketa.adamcova@vscht.cz

Abstract: The need to reduce the content of questionable health preservatives leads to the search for new methods to extend the shelf-life of meat products. The spectrum of possible approaches includes physical methods and the use of additives from natural sources. In this study, we examined the influence of the combination of high-pressure processing (HPP) and the addition of natural antimicrobials on the shelf-life of cooked ham. The samples of cooked ham were produced in a professional meat processing plant. One half of the samples were produced according to a traditional recipe, and the other was enriched with potassium lactate in the form of a commercial product PURASAL® Hirer P Plus. This product is produced via sugar fermentation and contains high levels of potassium lactate, a compound with high antimicrobial activity. Cooked hams were inoculated by bacteria Serratia liquefaciens, vacuum packaged and treated by HPP. Packaged ham samples were stored at 3°C for 40 days and the total microbial count was examined during this storage period in defined intervals. The combination of HPP and potassium lactate from natural sources significantly reduced the total microbial counts in cooked hams and, thus, could be a suitable solution for the meat industry.

Keywords: hurdle technology; meat products; microbial stability; potassium lactate; preservation; Serratia liquefaciens

One of the main limiting factors of shelf-life of meat products is microbial spoilage, which can be slowed down by some technological procedures, such as the addition of preservatives, heat treatment, fermentation, packaging, drying, high-pressure processing, etc. These individual procedures are usually not applied as separate processes, but in an optimised combination with each other, creating a so-called hurdle effect, to increase the effectiveness of applied preservation processes (Marcos et al. 2008; Hygreeva & Pandey 2016; Horita et al. 2018).

In the last decade, there has been a search for optimised combinations of hurdles, which will extend the shelf-life of the product and, at the same time, respond to an increased demand for meat products produced by alternative methods. This demand is related to the increasing knowledge of consumers and increasing popularity of alternative dietary patterns. Such products should contain as few preservatives as possible, and the shelf-life should be ensured by methods which ideally do not negatively affect the nutritional values (Hugas et al. 2002; Hygreeva & Pandey 2016). A possible approach to accomplish such requirements is to combine a physical method, such as high-pressure processing, with addition of antimicrobial substances from natural sources.

Supported by the Ministry of Agriculture of the Czech Republic, Project No. QJ1610202 and by FRIP development fund RO 0318.
This combination could effectively reduce microbial counts and extend the shelf-life (Hugas et al. 2002; Marcos et al. 2008; Hygreeva & Pandey 2016).

High-pressure processing (HPP) is a non-thermal processing technique, for a wide range of food materials (Hugas et al. 2002; Belleti et al. 2013). HPP effectively reduce microbial numbers and, at the same time, practically do not influence the nutritional and sensory properties of fresh and processed meat products and is therefore more gentle than commonly used heat treatment. Hence, one of its primary purposes is a final hygienisation treatment after production and packaging (Belleti et al. 2013). However, high-pressure processing in meat production should always be used about the possible negative impact on texture and water holding capacity (Marcos et al. 2007; Bajovic et al. 2012).

The effectiveness of high-pressure processing depends on the process conditions (levels of pressure, processing time, temperature, etc.) and physicochemical parameters of treated meat product (pH, a_w, salt content, initial contamination, etc.). High-pressure processing effectively deactivates eukaryotic cells and Gram-negative bacteria; Gram-positive bacteria are generally more resistant to HPP (Hugas et al. 2002; Horita et al. 2018). During the pressurisation, microbial cells are inactivated by a combination of factors, such as the damage of the cytoplasmic membrane, the denaturation of microbial proteins, and the inactivation of metabolic enzymes. According to Garriga et al. (2004) and Bajovic et al. (2012) the level of pressure between 400–600 MPa for 3–7 min is sufficient for the pasteurisation of meat products.

Without a doubt, preservatives are a significant part of the composition of meat products. Sodium chloride and sodium nitrite (E250) are amongst the most commonly-used preservatives in the meat industry (Pipek et al. 2016). Both compounds have essential functions such as improving technological, organoleptic and safe shelf-life properties of meat products. Both compounds are safe in recommended doses and ways of treatment (Alahakoon et al. 2015). However, extensive intake of sodium chloride is associated with an increased risk of high blood pressure and the subsequent development of cardiovascular diseases (Kamenik et al. 2017). Sodium nitrite can pose a risk due to highly carcinogenic nitrosamines that are formed during heat treatment (>130°C) (Alahakoon et al. 2015). Thus, many studies have examined various methods to decrease the content of sodium chloride and sodium nitrite without negatively affecting the shelf-life of meat products. One of the possible approaches is to partially replace these compounds with natural antimicrobial properties such as lactic acid (E270) and its sodium (E325) and potassium (E326) salts, which are commonly used additives (Marcos et al. 2008; Alahakoon et al. 2015).

Lactic acid is produced via sugar fermentation, and sodium and potassium lactates are its derivatives (Marcos et al. 2008; Pipek et al. 2016). The use of lactates, especially potassium lactate, has several advantages in the meat industry, as it has no significant impact on the pH of meat products. Moreover, it has a mild salty taste, and can therefore partially replace sodium chloride (Houstma et al. 1993; Adamcová et al. 2016). Last but not least, lactates can significantly extend the shelf-life of meat products (Houstma et al. 1993; Marcos et al. 2008), by extending the lag-phase of microorganisms, i.e. slowing down their metabolism, and inhibiting some metabolic pathways (Carpenter & Broadbent 2009; Bradley et al. 2011). According to previous studies, addition of 2–3 wt% potassium lactate effectively reduces microbial counts, and at the same time does not significantly influence the quality of tested meat products (Bradley et al. 2011; Adamcová et al. 2016).

Even though high-pressure processing and lactates treatments are already commercially used in the meat industry across the world, there are only a few studies on the combined effect of these methods on the shelf-life of meat products. Marcos et al. (2008) examined the effectiveness of HPP and potassium lactate on the growth of Listeria monocytogenes in cooked meat products. They found that the combination of HPP and lactate significantly reduced the counts of Listeria monocytogenes during 84 days storage period at 5°C. Due to the limited available knowledge on the combined effects of HPP and lactates, there is an increasing need to examine the application of these methods on a broader range of spoilage and pathogenic microorganisms. Therefore, we examined the effectiveness of this combination on the reduction of bacteria Serratia liquefaciens, which is one of the most important spoilage microorganisms in cooked ham (Belleti et al. 2013).

Material and methods

Cooked ham manufacturing. Cooked hams were prepared according to a traditional recipe (Table 1) and procedure in the meat production plant (MP Krásno a.s., Czech Republic). Samples were divided into...
two batches. The first batch was prepared with the addition of sodium chloride only and the second batch contained both – sodium chloride and potassium lactate. Whereas 50% of the sodium chloride was equimolarly replaced by potassium lactate (PURASAL® HiPure P Plus; Corbion, Netherlands). Samples were packaged in polyamide bags and cooked according to Czech regulation 69/2016 (for 10 min with a temperature at 70°C in the centre of the product). The whole pieces of cooked hams were transported to University of Chemistry and Technology Prague (UCT) under cooling conditions and stored at 3°C before further treatment (slicing, inoculation of microorganisms, packaging and HPP).

Bacterial strain and culture preparation. The bacterial strain of *Serratia liquefaciens* (CTC1691) was obtained from the Czech State Veterinary Administration Jihlava. The bacteria were transported to UCT Prague on Blood Agar plates (Merck KGaA, Germany). Subsequently the inoculum culture was prepared. One bacterial colony was transferred in 5 ml of Tryptic Soy Broth (Merck KGaA, Germany) and incubated overnight at 30°C. The prepared bacterial culture was afterward used for the inoculation of the cooked ham.

Sample preparation and high-pressure processing. Cooked ham (a_w = 0.98 and pH = 6.12) and cooked ham with added potassium lactate (a_w = 0.97 and pH = 6.20) were aseptically unpacked and sliced into 2 cm thick slices, which were subsequently inoculated by the appropriate dilution of the culture of *Serratia liquefaciens* (CTC1691) to obtain an inoculation level of 10^3 CFU/g. The inoculum was equally spread over the surface of the slice. After the absorption of the inoculum (2 min), samples were vacuum-packaged (95% vacuum) in polyethylene-polyamide bags (Wipak®, Finland) and stored at 3°C for 48 h before HPP.

After the storage period, inoculated samples were treated under different HPP conditions (Table 2). The pressurisation was carried out in an experimental HPP unit (ŽĎAS a.s. joint stock Co., Czech Republic) at the Food Research Institute Prague. The volume of the pressure chamber was 2 l, and the pressurisation fluid was drinking water. After the pressurisation process, samples were transported to UCT Prague under cooling conditions 3°C and stored at 3°C for 40 days.

Microbiological determinations. Samples of cooked hams were analysed according to Czech Standards ČSN EN ISO 6887-1 and ČSN EN ISO 6887-2. Ten grams of the inoculated ham from each sample was transferred into a sterile blender bag (VWR®, USA) and mixed with 90 ml of sterile physiological solution. The samples were then, homogenised in a Stomacherte laboratory blender (Seward, United Kingdom) for 2 minutes. One milliliter of appropriate dilution was pipetted onto a sterile Petri dish and mixed with Plate Count Agar (Merc KGaA, Germany). The inoculated plated were incubated at 30°C for 72 hours.

Three repetitions for each sample were analysed on day 1 (after packaging), day 4 (first day after pressurisation), day 7, 11, 18, 25, and 40 of the storage period.

Statistical analysis. The inactivation of *S. liquefaciens* was expressed by log-reduction of microbial counts before and after pressurisation, i.e., log (N_0/N).

Table 1. The composition of cooked hams

<table>
<thead>
<tr>
<th>Raw materials</th>
<th>Cooked ham (wt%)</th>
<th>Potassium lactate (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pork shoulder</td>
<td>71.4</td>
<td>71.4</td>
</tr>
<tr>
<td>Ice</td>
<td>20.7</td>
<td>19.2</td>
</tr>
<tr>
<td>Aroma, Naturcoloid, Naturham</td>
<td>6.2</td>
<td>6.2</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>1.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Potassium lactate</td>
<td></td>
<td>2.3</td>
</tr>
<tr>
<td>Sodium nitrite</td>
<td>0.008</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Table 2. Serratia liquefaciens after different HPP conditions

<table>
<thead>
<tr>
<th>Samples</th>
<th>Pressure (MPa)</th>
<th>Time (min)</th>
<th>Temperature (°C)</th>
<th>Inactivation log (N_0/N)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooked ham</td>
<td>A</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>400</td>
<td>10</td>
<td>14.8</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>400</td>
<td>20</td>
<td>15.7</td>
</tr>
<tr>
<td>Potassium lactate</td>
<td>D</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>400</td>
<td>10</td>
<td>16.2</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>400</td>
<td>20</td>
<td>16.6</td>
</tr>
</tbody>
</table>

*values are means ± standard deviation
Data obtained from microbiological determinations were analysed for statistical significance with analysis of variance (ANOVA). Significant differences among results were determined using Tukey’s t-test ($P < 0.05$) in Statistica 13.1 (TIBCO Software Inc., USA).

RESULTS AND DISCUSSION

High-pressure processing (400 MPa/10 min; 400 MPa/20 min) significantly reduced ($P < 0.05$) the initial contamination of the samples in the range of 2.3–2.8 log CFU/g (Table 2). After pressurisation, the population counts of Serratia liquefaciens were lower than the initial inoculation count and were near the detection limit of the enumeration method. This consequential inactivation effect might have occurred due to the fact that Serratia liquefaciens is sensitive to HPP (Belleti et al. 2013). The level of reduction of S. liquefaciens presents similar microbial inactivation in comparison with similar studies (Garriga et al. 2004; Jofré et al. 2008; Belleti et al. 2013; Argyri et al. 2018). Pressures between 400–600 MPa caused various microbial count reductions for various microorganisms in different meat products. The microbial count of S. liquefaciens in dried ham, Pseudomonas spp. in chicken fillets, Salmonella spp. and Enterobacteriaceae spp. both in cooked ham, was reduced to at least 2.6 log CFU/g at 450 MPa/5 min (Belleti et al. 2013), 2.8 log CFU/g at 500 MPa/10 min (Argyri et al. 2018), 3.5 log CFU/g at 600 MPa/5 min (Jofré et al. 2008), and 4 log CFU/g at 600 MPa/6 min (Garriga et al. 2004) respectively.

According to our results (Figure 1), the population of S. liquefaciens in the pressurised samples without the addition of potassium lactate remained low at the beginning of the storage. However, the population increased throughout the storage period depending on the holding time of pressure and storage day. Nevertheless, the lag-phase of microorganisms was significantly extended in HPP treated samples compared to unpressurised samples ($P < 0.05$). There might be several explanations for this phenomenon, but the most probable is that HPP causes changes in the permeability of the microorganisms’ cell membrane, followed by the inhibition of enzymes, and the destabilisation of the DNA (Hugas et al. 2002; Aymerich et al. 2008). Similar results were obtained in the studies of Argyri et al. (2018) and Garriga et al. (2004), who analysed the growth curve of various representatives of family Enterobacteriaceae after HPP. Moreover, Hugas et al. (2002) and Rendueles et al. (2011) found, that by extending the pressure holding time, the more significant extension of the lag-phase could be obtained.

The partial replacement of sodium chloride by potassium lactate in the composition of cooked ham had a positive effect on the shelf-life of both the unpressurised and the pressurised samples (Figure 1). In regards to the addition of potassium lactate in unpressurised samples, the numbers of S. liquefaciens were significantly lower (0.31–1.16 log CFU/g) in samples with added potassium lactate compared to without potassium lactate during the entire storage period ($P < 0.05$). The statistically significant difference between pressurized samples with and without potassium lactate was noticeable from the 11th (400 MPa/10 min) and 25th (400 MPa/20 min) day of storage. It is obvious that the different mechanisms of microbial inactivation by HPP and potassium lactate works in synergism, as HPP causes damage to the cell wall and the changes in microbial metabolism and thus make bacteria more vulnerable to the antimicrobial effects of organic acids and their salts (Hugas et al. 2002; Marcos et al. 2008).

According to the above, both methods alone can significantly ($P < 0.05$) reduce the numbers of S. liquefaciens in cooked ham. However, their combination along with the longer holding time of pressure seems to be the most effective method to extend the lag-phase of S. liquefaciens.

![Figure 1. Changes in the population of S. liquefaciens during storage of cooked. A – unpressurised cooked ham; B – 400 MPa for 10 min; C – 400 MPa for 20 min; D – unpressurised with added lactate; E – with added lactate and treated by 400 MPa for 10 min, F – with added lactate and treated by 400 MPa for 20 min](image-url)

