Diurnal fluxes of CO$_2$ and N$_2$O from cattle-impacted soil and implications for emission estimates

M. Šimek, P. Brůček, J. Hynšt

Biology Centre AS CR, Institute of Soil Biology and University of South Bohemia, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic

ABSTRACT

Short-term diurnal changes in emissions of CO$_2$ and N$_2$O were determined in a cattle overwintering area during three specific periods of the year. Production of both N$_2$O and CO$_2$, as determined with gas chambers buried in soil and spatially distributed changed rapidly, and the general course of fluxes of the two gases was different. CO$_2$ emissions were basically controlled by temperature, and most gas chambers showed the same trends in CO$_2$ flux, indicating low spatial heterogeneity. In contrast, N$_2$O emissions were much more spatially heterogeneous and each chamber had its own time course of emission; therefore, the relationship between flux and temperature was more complicated for N$_2$O than CO$_2$. For estimating gas emissions over long periods, we strongly recommend the use of frequent emission measurements during periods of high gas fluxes.

Keywords: greenhouse gas; emission estimates; nitrous oxide; carbon dioxide; pasture

High spatial heterogeneity and temporal variability is a common feature of soil microbial processes. The variability of N$_2$O emissions from soils in space and time is usually considered as extreme (e.g., Velthof and Oenema 1995, Röver et al. 1999), and often most of the gas is produced during short periods in a limited area, in so-called ‘hot spots’ (Parkin 1987). Hot spots can be created for example by intensively decomposing organic particles, or they can develop at the interface of nitrogen-rich organic particulates and the surrounding soil, where nitrification and denitrification (the two major processes producing N gases) occur in close proximity (Petersen et al. 1996, Jarvis 1997).

Production of N$_2$O often follows nitrogen input into the soil. In pastures, a substantial portion of nitrogen input is in the form of animal urine and excrement. Distribution of microsites producing N$_2$O is quite heterogeneous. On the other hand, emissions of CO$_2$, which is also produced during decomposition of excrements, are normally less heterogeneous. In our previous investigations, a cattle overwintering area in South Bohemia was identified as an important source of N$_2$O because of substantial excrement deposition, impacts on soil physical properties, and limited N use by plants in winter (Šimek et al. 2006, Hynšt et al. 2007a).

The present work supplemented previous results of long-term measurements with more detailed investigations. We hypothesized that conditions favorable for N$_2$O production in soil and N$_2$O emission from soil occur in a relatively short-time period during the first stages of decomposition of accumulated excrements, and that emissions of N$_2$O are proportional to temperature. The objective of the present work was to determine short-term patterns of N$_2$O and CO$_2$ emissions from soil in the cattle overwintering area. Because numerous overwintering areas in the Czech Republic represent potentially significant sources of trace gases, it is important to gain knowledge about gas flux patterns from this type of agricultural system. Knowledge of gas flux patterns would improve estimates of amounts of N and C released from the soil to the atmosphere.

Supported by the Czech Science Foundation, Grant No. IAA600660605, by the Research Plan, Grant No. AV0Z 60660521, and by the Ministry of Education, Youth and Sports of the Czech Republic, Project No. MSM 6007665801, and by Grants No. LC 06066 and 21-1072/2004.
MATERIALS AND METHODS

Experimental site, gas flux determination, and laboratory analyses. The experiments were carried out at the moderately cattle-impacted locality in a cattle overwintering area at the Borová Farm, Southern Bohemia (Šimek et al. 2006, Hynšt et al. 2007a). The soil on the site is a sandy loam haplic phaeozem (arenic; WRB system) containing 60–80% sand, 14–32% silt, and 6–14% clay (USDA classification system). Soil pH (H2O) was 7.25, soil organic carbon and total nitrogen content were 4.04 and 0.89%, respectively. The site receives on average 650 mm precipitation, and the mean annual temperature is 7°C.

Gas fluxes were determined using non-vented manually closed chambers (Hynšt et al. 2007a), buried 5 cm in soil and spatially distributed. The amounts of N2O and CO2 were quantified using an HP 5890 gas chromatograph and an HP P200H Portable Gas Microchromatograph (both Hewlett Packard, USA).

Soil (–10 cm) and air (+10 cm) temperatures were recorded using a data logger equipped with Ni-sensors (Comet L0121, France). Soil samples from 0–15 cm layer were sieved (5 mm) on the day of sampling and stored at 4°C until the next day, when soil mineral N content (NH4+-N and NO3--N) was measured colorimetrically in 1M KCl extracts (Zbíral et al. 1997).

Diurnal variation and spatial heterogeneity of gas fluxes. Field measurements were conducted in three seasons: in early May (when high N2O emissions were expected; Hynšt et al. 2007a), in mid-July, and in early November. The flux measurements always started at 9 a.m. For each measurement, the chambers were closed and gas samples were taken at time 0 and 60 min. After the second sampling, the chambers were opened for 2 h and then the next measurement was performed. These experiments lasted 24 h. Gas samples were transported to the laboratory and immediately analyzed by gas chromatography. Another experiment was performed on the same site in May. Flux measurements as described above started at 3 p.m. and continued for the next 45 h. The third experiment was conducted in April, used 32 measuring points, and lasted 2 weeks.

Gas fluxes following the input of nutrients. This experiment was conducted to estimate N2O emissions from artificially created ‘hot-spots’ formed using glucose and KNO3 amendments (Hynšt et al. 2007b). The experiment was performed in May and lasted 36 h. Flux measurement started at 9 a.m. when the chambers were closed, and gas samples were taken after 0 and 60 min. Then 2,000 ml of a nutrient solution corresponding to 500 kg N/ha and 500 kg C/ha was applied immediately to each chamber. The chambers were then closed at 3-h intervals and gas samples were taken.

Statistics. Pearson’s correlation coefficients were calculated to test for possible relationships between the environmental variables and N2O and CO2 fluxes. Data processing and analyses were conducted using Statistica 7.

RESULTS

Diurnal variation and spatial heterogeneity of gas fluxes. Three individual experiments examining the time course of gas emissions showed substantial differences in N2O and CO2 fluxes (Figure 1). CO2 fluxes (Figure 1B) had a pronounced diurnal time course, especially in experiments carried out in May and July, when emissions were maximum around noon or early afternoon and were minimum from 3–6 a.m. Despite rather similar time courses among the seasons, there were substantial differences in average minimum and maximum fluxes within each season. Mean CO2 fluxes ranged from 33 to 100 mg CO2-C/m2/h in May, from 143 to 406 mg CO2-C/m2/h in July, and from 14 to 36 mg CO2-C/m2/h in November. Diurnal variation in the CO2 fluxes was related to temperature in May and July (Figure 1B).

Like the CO2 fluxes, N2O fluxes (Figure 1A) varied during the day but the time course for N2O production was different from that for CO2 production. In general, the time courses for N2O production in May, July, and November differed. The maximum emission was 50.6 times higher than the minimum emission in May, 4.2 times higher in July, and 3.6 times higher in November. In contrast to the CO2 fluxes, the diurnal variation of N2O fluxes was not related to the diurnal variation in temperature (Figure 1A). Data analysis suggested that the N2O fluxes were positively skewed and that it might be better to use medians instead of means. In contrast to CO2 data, N2O medians were often much lower than the corresponding arithmetic means (Figure 1). This finding was confirmed in the second experiment performed in May (Figure 2). It was obvious that the arithmetic means were strongly influenced by data from two chambers, A and D (Figure 2A). The spatial heterogeneity of N2O fluxes was even more evident when comparing the cumulative N2O-N fluxes during the 45-h experimental period. Six chambers exhibited fluxes of 22, 28, 31, 42, 229, and 376 mg N2O-N/m2, with an arithmetic mean of 121 and a median of 37 mg N2O-N/m2. Statistical

PLANT SOIL ENVIROM., 56, 2010 (10): 451–457

452
Gas fluxes following nutrient inputs. The addition of nitrate nitrogen and glucose carbon in amounts corresponding to 500 kg N/ha and 500 kg C/ha rapidly and substantially increased N₂O fluxes from the soil. Values ranged from 15 to 586 μg N-N₂O/m²/h at 9 a.m. before addition but ranged from 9 200 to 52 000 μg N-N₂O/m²/h 6 h after the treatment (Figure 4A). The emissions were significantly correlated with soil \(r = 0.54, P = 0.00002 \) and air \(r = 0.498, P = 0.0001 \) temperatures. CO₂ emissions (Figure 4B) showed a similar time course as N₂O fluxes, except for the increase of fluxes after nutrient application. Consequently, CO₂ emissions were significantly correlated with N₂O emissions \(r = 0.73, P = 0.00001 \) and soil and air temperatures \(r = 0.455, P = 0.0006 \) and \(r = 0.513, P = 0.00008 \), respectively (Figure 4A,B,C).
DISCUSSION

The results show that production of N$_2$O and CO$_2$ can change quickly. The general course of fluxes of the two gases was different, and CO$_2$ emissions were much more controlled by temperature, which is in agreement with numerous studies. In contrast to the results of Lloyd and Taylor (1994), who reported on exponential relationship between CO$_2$ fluxes and soil temperature, this relationship was always linear in the range of temperature covered (5–30°C) in the current study. That the fluxes often followed the changes in above-ground air temperature suggests that soil organisms in the top soil layers were largely responsible for CO$_2$ production in soil and CO$_2$ emission from soil; the same effect was found for example in organic boreal soils by Maljanen et al. (2002). In contrast to the temperature of deeper soil layers, the temperature of surface soil layers is closely related to air temperature. Strong daily fluctuation of CO$_2$ emissions could have important implications for estimates of cumulative annual flux of CO$_2$; our data show that any flux estimates must be used

Table 1. Pearson’s correlation coefficients for relationships between N$_2$O emissions, and CO$_2$ emissions and soil and air temperatures during diurnal measurements

<table>
<thead>
<tr>
<th>Season</th>
<th>n</th>
<th>CO$_2$ emissions</th>
<th>Soil temperature</th>
<th>Air temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td>45</td>
<td>0.234</td>
<td>0.502</td>
<td>0.272</td>
</tr>
<tr>
<td>July</td>
<td>72</td>
<td>-0.287</td>
<td>-0.119</td>
<td>-0.375</td>
</tr>
<tr>
<td>November</td>
<td></td>
<td>0.585</td>
<td>0.004</td>
<td>0.233</td>
</tr>
<tr>
<td>May, 2nd experiment</td>
<td>96</td>
<td>-0.220</td>
<td>0.154</td>
<td>0.238</td>
</tr>
</tbody>
</table>

Significant coefficients ($P < 0.05$) are highlighted, $n =$ number of correlated pairs
with care, especially if longer periods are to be covered.

In contrast to CO₂, N₂O emissions were much less predictable, and the possible relationship between temperature and emissions was often more complicated (Figure 1). Most chambers showed the same trend of CO₂ flux, while in the case of N₂O, each chamber had a different time course of emissions. High temporal and spatial variability of N₂O emissions was often observed in earlier field studies (e.g., Velthof and Oenema 1995, Velthof et al. 1996, Röver et al. 1999) and is a typical feature of N₂O fluxes. Together with known general features of N₂O fluxes, our results also suggest that obtaining reasonable estimates of N₂O flux requires that period(s) of high fluxes be identified and that detailed measurements be made during that period on the spatial distribution and temporal variability of emissions. With these data, N₂O fluxes can be then reliably estimated.

The daily fluctuation of N₂O emissions in soil amended with C and N in the present study is roughly in agreement with the results obtained under other conditions (e.g., Williams et al. 1999, Hyde et al. 2005). Diurnal cycles of N₂O emissions were also found in soil monoliths transferred to a greenhouse, with maxima occurring at night (Thomson et al. 1997), and were associated with diurnal cycles in

Figure 3. Hourly N₂O emissions in 32 individual chambers distributed regularly at the study site during a 2-week period in April. Air (10 cm above soil surface) and soil (10 cm below soil surface) temperatures determined at the beginning of each of 8 measurements are shown in part B

<table>
<thead>
<tr>
<th>Season</th>
<th>n</th>
<th>Soil temperature</th>
<th>Air temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td>45</td>
<td>0.499</td>
<td>0.772</td>
</tr>
<tr>
<td>July</td>
<td>72</td>
<td>0.227</td>
<td>0.856</td>
</tr>
<tr>
<td>November</td>
<td>56</td>
<td>−0.174</td>
<td>0.139</td>
</tr>
<tr>
<td>May, 2nd experiment</td>
<td>96</td>
<td>0.407</td>
<td>0.720</td>
</tr>
</tbody>
</table>

Table 2. Pearson's correlation coefficients for relationships between CO₂ emissions and soil and air temperatures during diurnal measurements. Significant coefficients (P < 0.05) are highlighted, n = number of correlated pairs.
soil temperature (Smith et al. 1998). Other studies, however, did not document diurnal changes in N₂O fluxes (e.g., Smith and Dobbie 2001). Our results suggest that emissions of N₂O are closely correlated with nitrogen inputs related to cattle and confirm that measurement of emissions after experimental additions of nutrients to soil can provide information about the ‘emission factor’, i.e., the proportion of added N that is emitted from the soil as N₂O (Hynšt et al. 2007b). Although emission of gases can also be strongly affected by plants, the effect of vegetation was not a focus of the current study.

This study documents variations in the emissions of CO₂ and N₂O from the soil of a cattle overwintering area. CO₂ was produced continually in the soil, and its emission was often correlated with temperature. The pattern of N₂O flux was much less predictable than that of CO₂. Production of N₂O was characterized by sharp, short-term peaks of fluxes at each microsite, i.e., emissions were heterogeneous in space and time. Obviously, the estimates of gas production and cumulative fluxes in general and those of N₂O in particular must be based on detailed knowledge of diurnal variations in fluxes in the given period. Our results suggest
that estimation of annual fluxes of N_2O should be based on detailed investigation of emissions during periods of increased fluxes. Emission estimates published in past decades, which were often based on only a few field flux measurements, must be used with caution.

Acknowledgement

Mr. and Mrs. Kamír are thanked for allowing access to the experimental plot.

REFERENCES

Received on May 26, 2010

Corresponding author:

Prof. Ing. Miloslav Šimek, CSc., Jihočeská univerzita v Českých Budějovicích – Přírodovědecká fakulta, Biologické centrum AV ČR, Ústav půdní biologie, Na Sádkách 7, 370 05 České Budějovice, Česká republika

phone: + 420 385 310 174, fax: + 420 385 310 133, e-mail: misim@upb.cas.cz