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Abstract: In the present study, we have investigated several competing stochastic frontier models which differ in terms 
of the form of the production function (Cobb-Douglas or translog), inefficiency distribution (half-normal or exponen-
tial distribution) and type of prior distribution for the parameters (hierarchical or non-hierarchical from the Bayesian 
point of  view). This last distinction corresponds to  a  difference between random coefficients and fixed coefficients 
models. Consequently, this study aims to examine to what extent inferences about estimates of farms' efficiency depend 
on the above assumptions. Moreover, the study intends to investigate how far the production function's characteristics 
are affected by the choice of the type of prior distribution for the parameters. First of all, it was found that the form of the 
production function does not impact the efficiency scores. Secondly, we found that measures of technical efficiency are 
sensitive to distributional assumptions about the inefficiency term. Finally, we have revealed that estimates of technical 
efficiency are reasonably robust to the prior information about the parameters of crop farms' production technology. 
There is also a resemblance in the elasticity of output with respect to  inputs between the models considered in this 
paper. Additionally, the measurement of returns to scale is not sensitive to model specification.
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In empirical studies of  economic efficiency, where 
a frontier production function model with panel data 
is employed, a restrictive assumption is made that all 
firms, or  decision making units (DMUs), must share 
precisely the same technological possibilities. How-
ever, DMUs do not themselves form a  homogeneous 
sample and vary greatly in  their technological capa-
bilities. Therefore, modelling heterogeneity is  impor-
tant, especially in the case of agricultural data, because 
farms usually conduct several agricultural activities, 
which depend on  various factors, both specific and 
general (external). As pointed out by  Tsionas (2002), 
in such a case assuming that firms share the same tech-
nology will result in the misleading measurement of ef-

ficiency. Therefore, when a researcher decides to focus 
on  a  specific type of  agricultural production, he has 
to choose criteria to distinguish it and run an analysis 
on  subsamples of  homogenous technology. However, 
this choice will always be arbitrary. Therefore, a non-
arbitrary approach to  handling sample heterogene-
ity should be used instead. In the literature, there are 
several such approaches to doing this. However, there 
are two of them which are the most common. The first 
one is the random coefficients stochastic frontier (SF) 
model (Tsionas 2002; Greene 2005). The special case 
of  the aforementioned model is  the true random ef-
fects (TRE) stochastic frontier model. In  this case, 
only the constant term is random; thus, Greene (2005) 
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originally called this model a  random constant mod-
el. An alternative approach is a  latent class stochastic 
frontier model (Caudill 2003; Orea and Kumbhakar 
2004; Greene 2005). As noted by  Greene (2005) and 
Emvalomatis (2012), in a random coefficients setting, 
firms' heterogeneity is  captured by  continuous varia-
tion in  technical parameters, while in  the latent-class 
model, this continuous variation is achieved by a dis-
crete approximation. Therefore, in  the present study, 
we  employ the more general approach using the so-
called random coefficients stochastic frontier model 
and its special case, i.e.  the TRE model. The results 
from these models will be  subsequently contrasted 
with the fixed coefficients stochastic frontier model.

The stochastic frontier models, and especially the 
random coefficients stochastic frontier models, have 
a hierarchical structure, in which case, a Bayesian ap-
proach is a particularly convenient tool since it allows 
exact estimation of  parameters, model selection and 
description of  uncertainty. The Bayesian approach 
to stochastic frontier models was first proposed by van 
den Broeck et al. (1994) and Koop et al. (1997). Since 
then, it has been successfully applied in  a  number 
of  studies and further developed (Areal et  al. 2012; 
Marzec and Pisulewski 2017; Skevas et al. 2018).

A relatively small number of applications of the ran-
dom coefficients stochastic frontier model in farm effi-
ciency analysis are by no means a new concept. Among 
the existing analyses, it is mainly German dairy farms 
that have been studied, e.g.  Emvalomatis (2012), Sk-
evas (2019). Models with random coefficients have also 
been used in a study of Czech crop farms by Čechura 
(2010) and an  analysis of  U.S.  agricultural state-level 
data by  Njuki et  al. (2019). Moreover, Čechura et  al. 
(2017) and Baráth et  al. (2018) have used the special 
case of  random coefficients models, i.e.  the Alvarez 
et al. (2004) model, in  the analysis of European dairy 
farms and Slovenian farms, respectively. The above-
mentioned studies usually provide a  comparison be-
tween fixed and random coefficients models. However, 
this distinction does not necessarily have to be the cru-
cial one. We argue that the other assumptions made 
in stochastic frontier models, such as inefficiency dis-
tribution and the form of production function, can also 
affect efficiency measurement and production char-
acteristics. Therefore, this paper aims to examine the 
robustness of the results obtained with respect to three 
aspects: an  approach to  heterogeneity (hierarchical 
and non-hierarchical prior distribution), distribution 
of the inefficiency term and the form of the production 
function.

Consequently, on the one hand, our study contributes 
to the literature on modelling technical efficiency (TE) 
of heterogeneous data. On the other hand, it provides 
a  measurement of  productive efficiency in  Poland's 
particular agricultural sector with models that account 
for heterogeneity, contributing to the empirical litera-
ture on this subject. Moreover, the chosen time-span 
(2004–2011) of the sample allows the direction of tech-
nical efficiency changes to be compared between Polish 
crop farms and those in other European Union coun-
tries for a similar time period (Čechura et al. 2015).

MATERIAL AND METHODS

Data on Polish crop farms. To measure the produc-
tive efficiency of heterogeneous farms, data on 660 crop 
farms from the Polish Farm Accountancy Data Net-
work (FADN 2020) was employed. These farms were 
observed over a  period of  eight years (2004–2011). 
Subsequently, the variables of  the production func-
tion model were put together based on this data. The 
definition of these variables is based on other studies 
in the field crop sector in which FADN data was used 
(Latruffe et  al. 2004; Bojnec and Latruffe 2009; Zhu 
and Lansink 2010). Therefore, the output (Q) is speci-
fied as the deflated total net farm revenues from sales 
(deflated with the year 2004 as  the base period), ex-
cluding the value of  feed, seeds and plants produced 
within the farm. The four inputs of  production are 
physical capital (K), total labour (L; hours), total uti-
lised agricultural area  (A;  ha) and materials  (M). 
It  is  worth mentioning that the latter input consists 
of  several subcategories (seeds and plants, fertilisers, 
crop protection, among others). To get the real value 
of the variables, i.e. of Q, K and M, price indexes pro-
vided by  the Central Statistical Office of  Poland are 
used as deflators. The exact definitions of these quanti-
ties, as  well as  information about the deflators, were 
presented by Marzec and Pisulewski (2017), Pisulewski 
and Marzec (2019).

Table 1 summarises the descriptive statistics for the 
variables used in the main study. The arithmetic mean 
area of  land per farm is  43  ha. Crop farms in  Euro-
pean countries are generally larger (Pisulewski and 
Marzec 2019).

Analytical framework. In the present study, we use 
the random coefficients stochastic frontier model. 
The general concept of such models dates back to the 
works of Hildreth and Houck (1968) and Swamy (1970). 
It is noteworthy that this type of model has found broad 
application, for example, in marketing (Rossi et al. 2005), 
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and therefore models of  this type are referred to  un-
der different names, i.e. as hierarchical models, mixed 
models or multilevel models (Greene 2012). From the 
Bayesian point of view, the specification of a hierarchi-
cal model includes not only the likelihood function but 
also two stages of prior distributions, i.e. for unit-level 
parameters and for the common parameters.

The stochastic frontier model with random coeffi-
cients was first introduced by  Kalirajan and Obwona 
(1994) and, in  the case of  ith object, this model takes 
the following form:

 (1)

where: yi – T-elementary vector which includes the nat-
ural log of the observed output for firm i (i = 1, …, N); 
Xi –  matrix that contains k explanatory variables 
which come from T time periods; βi – (column) vector 
of k parameters.

Furthermore, βi has a  k-variate normal distribu-
tion with expected value β and covariance matrix Ω, 
which is symmetric and positive-definite. Consequent-
ly, the coefficients βi are treated as  hidden random 
variables. In  that case, the coefficients vary between 
individuals. Moreover, the Equation (1) includes co-
efficients γ, which correspond to the explanatory vari-
ables grouped together in  vector Wi, which are not 
randomly distributed. An  example of  such variables 
could be the constant term or the trend. The conven-
tional fixed coefficients SF model is obtained when all 
explanatory variables are included in Wi. Additionally, 
ui and vi are T-elementary vectors representing ineffi-
ciency and the random term, respectively. Component 
uit ≥ 0 is referred to as inefficiency, and so the output-
oriented technical efficiency (TE) score is  calculated 
as  exp(–uit). The conventional assumption is  that the 

i i i i i iy W X v u= γ + β + −

error term and the inefficiency term are independently 
and identically distributed across units and time. In the 
study by  Aigner et  al. (1977), the inefficiency term 
is derived from a normal distribution truncated above 
at zero, ( )20, uN + σ , or it has an exponential distribution 
with mean λ, hereafter referred to as  ( )EXP λ . Other 
commonly adopted distributions are the truncated-
normal and gamma distributions.

The feature that distinguishes model defined by Equa-
tion (1) is  the fact that the parameters included in the 
production function (β) are firm-specific. In  the case 
of the Cobb-Douglas production function, it means that 
output elasticities with respect to inputs are different for 
each firm. The coefficients iβ  are identically and indepen-
dently normally distributed, thus have the same expected 
value and non-singular covariance matrix. Therefore, 
in  practice, farms are characterised by  individual pa-
rameters that should be similar between the farms. Both 
parameters, the vector β and the Ω matrix, which de-
fine the probability distribution of βi, are unknown and 
they must therefore be estimated. It is noteworthy that 
in the present study, the covariance matrix Ω is not di-
agonal. Restricting the Ω matrix to be diagonal is a prac-
tice quite often used in the empirical literature (Baráth 
et al. 2018; Njuki et al. 2019). On the one hand, this re-
striction facilitates the estimation procedure because 
there are fewer elements in the matrix to be estimated 
(only  k), while, in  the case of  the full covariance ma-
trix, there are 0.5 × k × (k + 1) elements. On the other 
hand, this assumption excludes any interrelated changes 
in the parameters. If the multi-inputs production func-
tion is considered in order to correlate the technical rate 
of substitution of different pairs of production factors, 
it is necessary to correlate the elements of the vector βi.

In the Bayesian approach, the statistical model is de-
fined by joint distribution for the data set and prior dis-
tributions for the parameters model. Therefore, there 

Table 1. Descriptive statistics for data set

Variable* Mean**
Percentile

5th 25th 50th 75th 95th

Output (in thousand EUR) 29 6 15 28 56 143
Capital (in thousand EUR) 56 13 30 56 104 252
Labour (in hours) 4 056 1 826 2 900 3 938 5 214 11 013
Materials (in thousand EUR) 20 5 10 19 36 95
Agricultural area (in ha) 43 10 21 40 83 220

*Figures were first deflated (with base year 2004) and then converted at an exchange rate of PLN 4.15 to EUR 1
**Descriptive statistics for output and input variables were calculated on the logarithmic scale and then transformed 
back to the original scale
Source: Pisulewski and Marzec (2019); FADN (2020)
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is a possibility via prior distributions to introduce some 
information about parameters, which is dictated by the 
economic theory or specificity of the considered issue. 
First of all, a normal prior with mean βµ  and covariance 
matrix Vβ is used for βi. The hyperparameter βµ  is cho-
sen so that the expected value of the output elasticity 
with respect to each production factor at the geometric 
mean of each input is 0.25, and consequently, there are 
constant returns to  scale. At  the same time, the ma-
trix Vβ  is assumed to be diagonal with 10 on diagonal. 
Therefore, a high variance for the elements of βi is as-
sumed. Subsequently, the Wishart prior is  assumed 
for the precision matrix Ω–1 (Emvalomatis 2012). As-
suming this type of  distribution guarantees the pos-
itive-definiteness of  Ω–1, as  well as  of the covariance 
matrix Ω. The next parameter is the precision of white 
noise term ( )2

v
−σ . The standard procedure is to assume 

the gamma distribution for this parameter. The hyper-
parameters are chosen so that the prior distribution 
is reasonably diffuse (Koop et al. 1997; Tsionas 2002).

Furthermore, in the present study, we consider two 
types of  distribution for the inefficiency term. In  the 
case of hyperparameters defining the prior distribution 
for the inefficiency term, described by the exponential 
distribution or half-normal distribution, it is assumed 
that the reciprocals of these parameters ( 1−λ  and 2

u
−σ ) 

have a gamma distribution. The four hyperparameters 
are chosen so that the median of the prior distribution 
for efficiency is approximately 0.8 (Koop et al. 1997).

The special case of the aforementioned random coef-
ficients model is the true random effects (TRE) mod-
el, which was proposed by Greene (2005). The model 
takes the following form:

 (2)

where: itw γ  –  equivalent to  the formula given previ-
ously in  Equation (1); iα  –  heterogeneous intercept 
that represents the effects of hidden variables specific 
to firm i in the same fashion over time.

However, unlike inefficiency, this random variable 
can assume both negative and positive values because 
it  is  related to  the total impact of  other unobserved 
characteristics of  firms. Following Feng and Zhang 
(2012), who presented a Bayesian approach to the TRE 
model, a normal prior: ( )2~ 0,i N αα σ  is assumed, while 
the prior distribution of  2−

ασ  is gamma, just as for scale 
hyperparameters discussed above. For other models, 
a normal prior is used for a common intercept. Almost 
all of  the aforementioned prior distributions reflect 

it it i it ity w v u= γ + α + −

very weak prior knowledge or restriction and allow the 
data to "speak for themselves".

RESULTS AND DISCUSSION

The foundation of efficiency measurement is to iden-
tify the corresponding production possibility set and 
compare it with farms' decisions. The considered mod-
els differ in terms of the form of the production function 
[Cobb-Douglas (CD) or translog], inefficiency distribu-
tion (half-normal or exponential distribution) and type 
of  prior distribution for the parameters (hierarchical 
or non-hierarchical from the Bayesian point of view). 
This last distinction corresponds to  a  difference be-
tween random coefficients and fixed coefficients mod-
els. Consequently, we have considered ten models, the 
detailed assumptions of which are presented in Table 2.

Th e parameters of the stochastic frontier models are 
estimated using the Gibbs sampler algorithm. We did 
an  initial run of  100  000  iterations and discarded the 
first 50 000 draws as "burn-in". After the "burn-in", these 
50 000 draws were used for estimating the marginal pos-
terior distribution of the quantity of interest. We then 
applied the Bayesian model comparison approach 
to  choose a  model which corresponds to  the  maxi-
mum posterior probability. In particular, in the present 
study, the Chib (1995) method is used to compute the 
marginal likelihood. Statistical analysis of the data was 
done using BayESTM software (Bayesian Econometrics 
Software, version 2.4).

As far as the form of production function is consid-
ered, it should be noted, based on posterior odds pre-
sented in Table 2, that the translog production function 
is  favoured by  the data as  long as  a  non-hierarchical 
prior is assumed for technology parameters. However, 
when a  hierarchical prior is  assumed for technology 
parameters, then the CD  production function is  fa-
voured by  the data. This result seems to  suggest that 
the CD  specification in  the hierarchical prior frame-
work achieves more parsimonious parameterisation 
than the other specifications considered. Subsequently, 
it can be seen that the exponential distribution of inef-
ficiency seems to be more favoured than a half-normal 
distribution. Moreover, Table 2 shows that the models 
with a hierarchical structure (i.e. with parameters var-
ying between farms) are preferred over the ones with 
a non-hierarchical prior. Finally, it should be noted that 
the most favoured model based on the data is the true 
random effects model with the translog production 
function and a varying intercept (M9), while the second 
one is the Cobb-Douglas model (M5) with firm-specific 
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parameters. Both models are based on  the exponen-
tial distribution for the inefficiency term. Therefore, 
in the empirical part of the study, we will first present all 
the results based on model M9, which will be compared 
with the results derived from the other specifications.

Since this study's main aim was to  assess the level 
of technical efficiency, its average scores from the com-
peting models are therefore presented in Table 3. The 
technical efficiency scores obtained can be compared 
with respect to the following assumptions of the mod-
els they are derived from: type of prior for technology 
parameters (hierarchical vs. non-hierarchical), type 
of  production function and type of  distribution for 

the inefficiency term. The technical efficiency in eve-
ry model with a  hierarchical prior (i.e.  M5,  …,  M10) 
is higher than in the corresponding model with a non-
hierarchical prior (M1, …, M4). However, the translog 
models' technical efficiency score is similar, no matter 
which type of  prior, hierarchical or  non-hierarchical, 
was used. Similarly, Čechura (2010) and Emvaloma-
tis (2012) obtained higher technical efficiency scores 
in random coefficients models. The differences in the 
mean technical efficiency score due to the form of pro-
duction function are negligible. Correspondingly, there 
are virtually no  differences in  average technical effi-
ciency scores between M1 and M3 or M2 and M4. Simi-

Table 3. Average firm-level technical efficiency estimates and their changes over time

Year M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

2004 0.86 0.80 0.86 0.80 0.88 0.83 0.87 0.81 0.87 0.82
2005 0.85 0.78 0.84 0.78 0.86 0.80 0.85 0.78 0.85 0.79
2006 0.84 0.78 0.84 0.78 0.86 0.80 0.85 0.78 0.85 0.80
2007 0.86 0.80 0.86 0.80 0.88 0.83 0.87 0.81 0.88 0.83
2008 0.84 0.78 0.84 0.77 0.85 0.80 0.84 0.78 0.85 0.79
2009 0.84 0.78 0.84 0.78 0.86 0.81 0.85 0.79 0.85 0.80
2010 0.85 0.80 0.85 0.79 0.88 0.83 0.86 0.81 0.87 0.82
2011 0.85 0.79 0.84 0.78 0.86 0.81 0.85 0.79 0.86 0.81
Mean 0.85 0.80 0.85 0.79 0.87 0.82 0.86 0.80 0.87 0.81

M – model
Source: Authors' calculations based on FADN (2020)

Table 2. Choice of model [equal prior model probabilities, i.e. P(Mr) = 0.1]

Mr Model specification
Type of prior for 

production function 
parameters

Log-marginal 
likelihood

Bayesian 
posterior 

odds ratios

Model 
rank

M1 CD, uit exponential, constant β non-hierarchical –1 513.780 ≈ 0 9
M2 CD, uit half-normal, constant β non-hierarchical –1 552.560 ≈ 0 10
M3 Translog, uit exponential, constant β non-hierarchical –1 462.470 ≈ 0 7
M4 Translog, uit half-normal, constant β non-hierarchical –1 510.230 ≈ 0 8
M5 CD, uit exponential, firm-specific β hierarchical –745.903 5.04 × 10–13 2
M6 CD, uit half-normal, firm-specific β hierarchical –793.269 1.35 × 10–33 4
M7 Translog, uit exponential, firm-specific β hierarchical –819.660 4.68 × 10–45 5
M8 Translog, uit half-normal, firm-specific β hierarchical –923.241 4.85 × 10–90 6
M9 Translog, uit exponential, firm-specific intercept hierarchical – TRE model –717.586 ≈ 1 1
M10 Translog, uit half-normal, firm-specific intercept hierarchical – TRE model –791.139 1.14 × 10–32 3

CD – Cobb-Douglas production function; M – model; TRE model – the true random effects model, in which only the 
intercept varies and other coefficients are fixed between farms
Hierarchical prior means that the coefficients vary between farms (i.e. parameters are firm-specific) and thus in the 
non-hierarchical model the slope parameters are not individual-specific (i.e. are fixed)
Source: Authors' own calculations based on FADN (2020)
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larly, there is a close resemblance in efficiency scores 
between M5 and M7 or M6 and M8.

Considering the distribution of the inefficiency term, 
it should be noted that the technical efficiency is higher 
in the models with exponential distribution (in the even-
numbered models) than in  the ones with half-normal 
distribution, even though the prior mean of uit is simi-
lar between the models. This indicates that estimates 
of  technical efficiency are sensitive to  the assumption 
made regarding the type of distribution of inefficiency. 
This finding is  supported by  Marzec and Pisulewski 
(2019), who also analysed crop farms in Poland, but us-
ing a truncated-normal SF model and obtained a sub-
stantially lower mean technical efficiency score (63%).

This being said, the computed linear correlation 
of the efficiency estimates based on M5 and M6 or M9 
and M10 is about 0.97. Therefore, the ranking of farms 
is not affected by choice of distribution. Similarly, in the 
study conducted by  Marzec and Pisulewski (2019), 
the correlation between half-normal and truncated-
normal technical efficiency scores was high (0.99). The 
form of  the production function makes as  well little 
difference in the farms' rankings because the geomet-
ric mean of the Spearman correlations is equal to 0.95. 
The distinction between the hierarchical and non-hier-
archical structure of the models has a slightly stronger 
impact on  the rankings' differences (the aforemen-
tioned mean equals 0.91).

Our findings show that the average posterior mean 
of  the technical efficiency scores was 87% in  mod-
els M5 and M9, and very similar values were obtained 
for the other models with exponential distribution. 
This result is similar to that obtained by Čechura et al. 
(2015), who showed the technical efficiency of Polish 
cereal farms to be 84%. It  is noteworthy that the effi-
ciency scores obtained for M4 and M10 are consistent 
with the results for Polish crop farms obtained with dif-
ferent methods, i.e.  Maximum Simulated Likelihood, 
presented by Pisulewski and Marzec (2019). Moreover, 
the latter study showed that models that account for 
two kinds of  inefficiency, i.e.  transient and persistent 
inefficiency (models M4 and M6 in  their study) lead 
to a lower overall technical efficiency score.

Figure 1 presents details about the TE scores of Pol-
ish crop farms (model M9). The majority of farms (72%) 
have an efficiency ranging from 0.85 to 0.95. Further-
more, only 7% of farms' efficiencies are low, i.e. below 
0.7. We also find that the median technical efficiency 
score is around 0.89, and so  it  is more than the prior 
assumed, i.e. 0.8. The results obtained from the other 
models are quite similar, especially including M5.

In all the considered models, inefficiency is  mod-
elled as time-varying. Moreover, it changes over time 
in  a  random and unstructured way. Therefore, these 
models provide no  information about the causes 
or  direction of  the change in  efficiency. Table  3 sug-
gests that there is little variation in technical efficiency 
scores over time and that there is no trend in chang-
es in  TE  scores. This result contradicts the findings 
of Čechura et al. (2015) who showed that, over the pe-
riod from 2004 to 2011, there were substantial changes 
in the technical efficiency of Polish cereal farms. There-
fore, it  is  worthwhile testing whether the observed 
jumps in the efficiency scores from model M9 are sta-
tistically significant. Furthermore, several variables, 
which can potentially explain the differences in  tech-
nical efficiency between farms, are defined. These are 
agricultural policy variables and farms' characteristics. 
The former variables include investment subsidies 
and less favoured areas (LFA) subsidies, while the lat-
ter consists of specialisation, economic size, land size, 
non-rented land (use of own land only) and own labour 
(use of  family labour only on their farms). The afore-
mentioned variables are expressed on  a  binary scale. 
For example, the two first variables are used to express 
whether the farm received funding from the EU or not. 
Moreover, specialisation equals one if  crop produc-
tion in the period t  is the main source of income and 
zero otherwise; while if the value of the total Standard 
Output (SO) of the farm is not less than EUR 50 000, 
it is a large unit (economic size is equal to one); other-
wise, it is a small one. 

Subsequently, we  then performed the panel re-
gression of  logit transformed efficiency scores, 
i.e.  ln[TE/(1  –  TE)], on  the aforementioned determi-
nants. Due to the transformation of the dependent var-

Figure 1. Percentage distribution of estimates of technical 
efficiency scores (model M9)

Source: Authors' calculations based on FADN (2020)
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iable, the dummy variables parameters are interpreted 
as quasi-elasticities and the positive sign of  the coef-
ficients means the associated variables have a negative 
effect on technical efficiency. Moreover, we considered 
two models, including individual- and time-specific 
effects treated as random or fixed. The Hausman test 
indicates that fixed effects is the appropriate estimator 
for this regression. The detailed results of this regres-
sion model are presented in Table 4.

Furthermore, the results of  the F-test indicate the 
statistical significance of the difference in the time-spe-
cific effects. Additionally, it was revealed that the F-test 
did not reject the null hypothesis of all individual-spe-
cific effects equal to zero. This can be explained by the 
fact that the TRE model, given by  the Equation  (2), 
already includes a heterogeneous intercept iα , which 
captures the variation between individuals.

The results summarised in Table 4 indicate that in-
vestment subsidies and specialisation in  agricultural 
production have a  negative and significant impact 

on  efficiency score. Moreover, farms that use only 
their own land have higher technical efficiency scores. 
However, the use of  only family labour by  farms and 
receiving LFA subsidies is found to be statistically non-
significant. Thus, there are no  significant differences 
in efficiency between these two types of farms. Finally, 
these findings suggest that larger farms are more effi-
cient than smaller ones. Additionally, among all vari-
ables examined in the study, economic size is one of the 
most important predictors of efficiency.

These results obtained by  regressing the estimates 
of efficiency scores on some additional variables point 
to some important implications for assumptions about 
the model  [Equation  (1)]. Namely, there is  a  need 
to take into account the influence of the factors men-
tioned above in  a  one-step procedure based on  the 
correctly specified stochastic frontier model. Without 
a doubt, it will be of interest for future research.

Table 5 contains a summary of information about the 
production function itself, i.e. in case of a typical crop 

Table 5. Production elasticity estimates and returns to scale (RTS) at sample mean for inputs (standard deviation 
in parentheses)*

Model elasticity M2 M5 M7 M9

Capital  0.001 (± 0.008)  0.028 (± 0.014)  0.017 (± 0.010)  0.029 (± 0.013)
Labour  0.263 (± 0.010)  0.265 (± 0.018)  0.258 (± 0.011)  0.264 (± 0.015)
Materials  0.873 (± 0.013)  0.659 (± 0.021)  0.781 (± 0.015)  0.627 (± 0.018)
Area  0.010 (± 0.009)  0.198 (± 0.018)  0.101 (± 0.011)  0.236 (± 0.015)
RTS  1.148 (± 0.009)  1.150 (± 0.018)  1.157 (± 0.013)  1.156 (± 0.015)
t (trend)  –0.001 (± 0.002)  –0.002 (± 0.002)  0.001 (± 0.002)  –0.0017 (± 0.0015)

M – model; RTS – returns to scale
*Inputs equal to the arithmetic mean of the data on a logarithmic scale
Source: Authors' calculations based on FADN (2020)

Table 4. Standard panel regression of technical efficiency scores on the binary covariates (fixed effects model)

Independent dummy variable 
with values yes (1) or no (0) Average value in the sample Parameter estimate P-value

Specialisation 0.91 –0.16 ≈ 10-6

Less favoured area (LFA) subsidies 0.29 –0.05 0.1727
Investment subsidies 0.14 –0.13 0.0002
Economic size (large) 0.20 0.13 0.0052
Land area size (large) 0.77 0.21 0.0001
Non-rented land 0.29 –0.07 0.0762
Family labour only 0.50 0.04 0.2110

F-test statistic values
F-test for individual effects – F(659; 4 606) = 0.54 ≈ 1
F-test for time effects – F(7; 4 606) = 19.9 ≈ 10–23

Source: Authors' calculations based on FADN (2020)
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farm, i.e. at the geometric mean of the data, all models 
show that the highest output elasticity is with respect 
to materials, while the lowest is with respect to capital. 
The main difference between the models concerns the 
elasticity with respect to materials and area. In particu-
lar, the impact of the former input is higher in the non-
hierarchical models, while it is lower in the hierarchical 
models. In  contrast, the influence of  the latter input 
on  production is  lower in  the non-hierarchical mod-
els, while it is higher in the hierarchical ones. Further-
more, the results indicate that the basic assumptions 
underlying production theory are satisfied. It is found 
that, in model M9, the sufficient condition for the law 

of diminishing marginal productivity at the geometric 
mean of  data is  fulfilled for all inputs except labour. 
In the sample of all farms, the majority of farms satis-
fied this law for all inputs, i.e. 83% for capital, 37% for 
labour, 100% for materials and 78% for the last input. 
Similar results were obtained in  model M5 with the 
CD  function with individual-specific parameters, but 
this condition is weaker for the CD than for the trans-
log function. Additionally, as shown in Table 5, trend 
parameter is  statistically non-significant in  all inves-
tigated models. Therefore, it implies that there was 
no technical progress over the whole analysed period 
(2004–2011).
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Figure 2. Percentage distribution of the individual produc-
tion elasticities with respect to input and returns to scale 
(models M9 and M5)
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In the context of  hierarchical modelling, the trans-
log  function can be  interpreted as  the Cobb-Douglas 
type function with elasticities that depend on the level 
of inputs in a deterministic way. Based on Figure 2 it can 
be  seen how heterogeneous are farms with respect 
to each production factor. For example, according to the 
baseline model M9, in case of production elasticity with 
respect to  capital, the 21%  of  farms are characterised 
by negative elasticity. However, in the case of the ma-
jority of farms, i.e. 76% of farms, the elasticity is posi-
tive and less than 1. The output elasticity with respect 
to  labour is  negative in  only 1%  of cases, while there 
are neither negative values nor values above 1 observed 
in the case of elasticity with respect to materials. In case 
of  elasticity concerning area, 2%  of  farms are shown 
to exhibit negative values. The last production charac-
teristic, which can be  derived, is  the returns to  scale. 
Figure 2 below implies that the majority of Polish crop 
farms, i.e.  97% of  them, operate under increasing re-
turns to scale. Comparing the results from Figure 2 and 
Table 4, we can observe that the distributions for out-
put elasticities obtained from both models have little 
difference between them, but their estimates resulting 
from the CD  function (M5) are more dispersed com-
pared to the translog (M9) function. In summary, there 
are noticeable differences between both models on this 
question, but they are not of sufficiently crucial impor-
tance as to require further discussion.

CONCLUSION

In the present study, we  have investigated several 
competing stochastic frontier models using a  Bayes-
ian inference. It was revealed that the technical effi-
ciency scores mainly differ between the models with 
exponential and half-normal distribution for the inef-
ficiency term. The type of prior distribution for the pa-
rameters, i.e. non-hierarchical and hierarchical, which 
correspond to  the "fixed" and random coefficients 
models, does not significantly affect the technical ef-
ficiency score, although in  the models with a  hier-
archical prior this score is  slightly higher. Moreover, 
the production elasticities with respect to  materials 
and area slightly vary between the hierarchical and 
non-hierarchical models. Additionally, no  significant 
differences were noticed due to  the form of  the pro-
duction function.

The comparison of  models, based on  Bayes fac-
tors, indicates that, among the models considered, the 
TRE model is the best. Consequently, the technical ef-
ficiency scores obtained from this model were inves-

tigated further. In  particular, the regression of  logit 
transformed efficiency scores on its determinants, time 
dummies and farm dummies was performed. It  sug-
gests that the differences over time are significant. 
Moreover, among the analysed determinants, only LFA 
subsidies and family labour are proved to  be statisti-
cally non-significant. The impact of specialisation and 
non-rented land are revealed to be negative, while the 
other statistically significant determinants have a posi-
tive effect on  TE. The investigated production char-
acteristics show that the regularity conditions of  the 
production function are satisfied for most of the inputs 
and in the case of the majority of farms.
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