Effect of Cow Energy Status on the Hypercholesterolaemic Fatty Acid Proportion in Raw Milk

JAROMÍR DUCHÁČEK, LUDĚK STÁDNÍK, MARTIN PTÁČEK, JAN BERAN, MONIKA OKROUHLÁ, JAROSLAV ČÍTEK and ROMAN STUPKA

Department of Animal Husbandry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic

Abstract

We evaluated the proportion of fatty acid groups, with an emphasis on hypercholesterolaemic fatty acids, in the milk of 25 Holstein cows during the 1st period of lactation in relation to their negative energy balance (NEB). Sampling of each cow’s milk started on the 7th day after calving. Milk samples (n = 425) were collected at 7-day periods during the first 17 weeks of lactation. The proportion (%) of saturated (SFA), hypercholesterolaemic (HCFA), volatile (VFA), unsaturated (UFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids in the milk fat was determined. Body condition score and fat to protein ratio in milk were applied for precise determination of the NEB breakpoint during the observed period. The effects of parity, NEB, regression on lactation week and fat to protein ratio were evaluated using SAS 9.3. Milk contained a lower proportion of SFA as well as equally higher UFA (± 2.13%; P < 0.01) during the NEB period. The overcoming of NEB caused an increase in SFA, however, and simultaneously a significant decline in total HCFA (–1.86%; P < 0.01) as well as main MUFA (–1.81%, P < 0.05). The results document the necessity of increasing Holstein cow robustness to meet the production conditions in dairy farms in relation to the requirement of higher nutrient quality as well as the potential health benefits of cow’s raw milk for consumers.

Keywords: consumer; dairy cow; health; negative energy balance; milk fat
Groups of FA in milk fat have a positive and/or negative effect on the consumer health. Especially saturated (SFA) and unsaturated (UFA) fatty acids are known for their important influence on the human health (Staňková et al. 2013). Wróblewska and Kaliszewska (2012) determined significant allergenicity of food according to the composition of bovine milk. Therefore, it is necessary to observe and evaluate bovine products from a wide range of all particular aspects. SFA have a negative effect on the cardiovascular system, especially the part represented by the hypercholesterolaemic FA (HCFA), which increase deposition of fat in the vascular walls, and are related to atherosclerotic diseases (Jensen 2002). In addition, there is another part of SFA, volatile fatty acids (VFA), which are produced in the rumen, thus indicating the intensity of rumen fermentation and the efficiency of nutrient utilisation (Bhagwat et al. 2012). UFA have a positive effect and represent important sources for the synthesis of biologically active substances improving the course of metabolism processes (Bauman & Lock 2010).

Changes in the milk content of individual FA or their groups in relation to NEB depth and NEB length have been evaluated in many studies (Gross et al. 2011). The findings usually agree in a higher proportion of UFA and/or lower content of SFA early postpartum under NEB with a subsequent UFA decline and/or SFA increase with regard to balancing the current energy status and continued lactation. Therefore, this period seems to be very important for milk composition directly affecting the human health via the proportion of FA groups. No research currently studies changes in FA group content, particularly with regard to HCFA, between negative and positive energy balance of cows, changes which directly affect the health quality of milk as an essential part of human food. Thus, the objective of this study was to evaluate the proportion of FA groups in the milk of Holstein dairy cows during the 1st period of lactation in relation to negative energy balance, with an emphasis on its potential importance for the consumer health.

MATERIAL AND METHODS

Animals and herd management. A total of 25 Holstein cows (9 primiparous, 9 in the second, and 7 in the third and subsequent parity) calved within one month were included in the study. Therefore, breed, year as well as seasonal effects were excluded. The average daily milk yield ranged from 11.34 l to 47.2 l of milk with an average of 28.60 l. All cows selected for observations were without reproduction and health disorders in previous lactations. Body condition was evaluated monthly in relation to the habit practiced by breeders. A body condition index (BCS; a 5-point scale with 0.25 point increments) was used for body condition evaluation (Ferguson et al. 1994). BCS ranged from 1.5 to 3.75 points with an average of 2.69. The cows were loose housed in a straw-bedded cubicle barn. All the animals were fed a total mixed ration (TMR) consisting of maize silage, lucerne silage, straw, grass hay, lucerne hay, concentrates, bakery draff, bakery waste, and mineral supplements. The ingredient composition of the diet corresponded to the current daily milk yield of individual cows, and feed rations were completely balanced for energy, protein and fat as well as mineral and vitamin content. Feed rations consisted of the same ingredients throughout the entire experimental period.

Sample collection and analyses. Sampling of each dairy cow’s milk started on the 7th day after calving. Milk samples (n = 425) were collected at 7-day periods during the first 17 weeks of lactation. Two aliquot milk samples were collected from each cow in accordance with the milk recording system on every sampling day. The first sample with a preservative was heated to 39 ± 1°C and applied for fat (F) and protein (P) percentage content determination using Milkoscan 133B (N. Foss Electric, Hillerød, Denmark). Subsequently the fat to protein ratio (FPR) was computed. The second sample, without a preservative, was used for the fat extraction and fatty acid (FA) content determination in accordance with the methodology described by Ducháček et al. (2012c). The content (mg/100 g) of individual FA (28) and six FA groups (SFA, its parts HCFA and VFA; UFA, its parts MUFA and PUFA) was investigated. Subsequently, the proportions (%) of the six FA groups observed in milk fat were determined and evaluated. The HCFA group included lauric, myristic and palmitic FA in accordance with Kontkanen et al. (2011). The VFA group was represented by the content of butyric, caproic, caprylic, and capric FA in accordance with the study by Pešek et al. (2006).

Statistical analysis. The data were evaluated by the SAS 9.3 statistical software (SAS/STAT® 9.3, 2011) using UNIVARIATE, CORR, and MIXED procedures. The best model for evaluation was selected in accordance with the values of the Akaike information criterion (AIC). A model including the effects
of parity, negative energy balance, and regression on lactation week corresponding with milk yield recorded as well as on milk FPR both specifying the energy status of dairy cow (Moallem et al. 2007) was designed for evaluation of FA group (SFA, HCFA, VFA, UFA, MUFA, PUFA) proportions in the total milk fat content. The main effect of NEB was represented by two levels (YES – within the NEB period, NO – NEB period overcome) expressed according to the individual BCS changes and additionally by the course of current milk yield as well as milk FPR values during weeks of observation used as a regression. Cows with BCS decline were considered within the NEB period, while those with balanced or increased BCS were labelled as NEB overcome. The length of average NEB was 10.12 weeks, when average BCS continually declined from 3.13 points in calving to 2.52 points in the 12th week. Subsequently, BCS slowly, however continuously increased to 2.55 points in the 16th week post partum. The NEB course was specified on the level of individual dairy cows using their current milk yield and corresponding FPR during three weeks before balancing/increasing BCS. In accordance with Duffield et al. (1997) and Vacek et al. (2011), the threshold of FPR on the level 1.3 was taken as a criterion for within NEB (> 1.3) and/or NEB overcome (< 1.3). Regressions on lactation week and milk FPR applied within the model clarified the determination of the NEB breakpoint because of the monthly period of BCS evaluation. The Tukey-Kramer method was used for evaluation of differences in the least squares means. The model equation used for the evaluation was as follows:

\[Y_{ijk} = \mu + \text{PAR}_i + \text{NEB}_j + b_1 \times \text{(WEEK)} + b_2 \times \text{(FPR)} + e_{ijk} \]

where: \(Y_{ijk} \) – dependent variable (SFA, HCFA, VFA, UFA, MUFA, PUFA in %); \(\mu \) – mean value of dependent variable; \(\text{PAR}_i \) – fixed effect of \(i \)th number of lactation (\(i = 1 \)st lactation,

\(n = 153; 2\text{nd} \) lactation, \(n = 153; 3\text{rd} \) and subsequent lactations, \(n = 119 \); \(\text{NEB}_j \) – fixed effect of \(j \)th NEB period occurrence (\(j = \)YES – within NEB period, \(n = 242; \) NO – NEB period overcome, \(n = 183 \)); \(b_1 \times \text{(WEEK)} \) – regression on the lactation week order; \(b_2 \times \text{(FPR)} \) = regression on the fat to protein ratio in milk sample; \(e_{ijk} \) – random error

Significance levels \(P < 0.05, P < 0.01, \) and \(P < 0.001 \) were used to evaluate the differences between groups.

RESULTS AND DISCUSSION

The average F was 3.80% with standard deviation 0.84. The average FPR was 1.21 with standard deviation 0.29. FA groups were represented in milk fat as follows: SFA 75.10%, HCFA 43.03%, VFA 20.43%, UFA 24.90%, MUFA 21.50%, and PUFA 3.39%. The basic characteristics of the applied model presented in Table 1 documented its suitability for evaluation of all FA groups.

The results from the MIXED model are given in Tables 2 and 3. The significantly higher value of SFA (+2.13%; \(P < 0.01 \)) and/or equally lower UFA (–2.13%; \(P < 0.01 \)) was evaluated after the NEB period. This fact corresponds with the findings of Soyurt et al. (2007), Stoop et al. (2009), Gross et al. (2011), and Ducháček et al. (2013).

SFA, primarily HCFA as its part, are considered to be harmful mainly in relation to an increased plasma cholesterol level (Bauman & Lock 2010). A higher proportion of HCFA group in blood causes the deposition of fat in the blood vessel walls and leads to the atherosclerotic disease (Haug et al. 2007). Kirchnerová et al. (2013) found a gradual increase in HCFA values during lactation expressed by the correlation coefficient \(r = 0.584 \). However, they evaluated its content in different breeds of cattle kept on farms using the pasture system. On the other hand, our results, detected in high-yielding dairy cows

Table 1. The basic characteristics of the model designed

<table>
<thead>
<tr>
<th>Traits</th>
<th>Model</th>
<th>Parity</th>
<th>NEB</th>
<th>Lactation week</th>
<th>FPR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(r^2)</td>
<td>(P)</td>
<td>(F)-test</td>
<td>(P)</td>
<td>(F)-test</td>
</tr>
<tr>
<td>SFA</td>
<td>0.38</td>
<td>< 0.0001</td>
<td>14.22</td>
<td>< 0.0001</td>
<td>7.68</td>
</tr>
<tr>
<td>HCFA</td>
<td>0.30</td>
<td>< 0.0001</td>
<td>25.11</td>
<td>< 0.0001</td>
<td>9.13</td>
</tr>
<tr>
<td>VFA</td>
<td>0.18</td>
<td>< 0.0001</td>
<td>1.52</td>
<td>0.2200</td>
<td>27.47</td>
</tr>
<tr>
<td>UFA</td>
<td>0.38</td>
<td>< 0.0001</td>
<td>14.22</td>
<td>< 0.0001</td>
<td>7.68</td>
</tr>
<tr>
<td>MUFA</td>
<td>0.35</td>
<td>< 0.0001</td>
<td>12.38</td>
<td>< 0.0001</td>
<td>6.13</td>
</tr>
<tr>
<td>PUFA</td>
<td>0.28</td>
<td>< 0.0001</td>
<td>9.98</td>
<td>< 0.0001</td>
<td>9.19</td>
</tr>
</tbody>
</table>

NEB – negative energy balance; FPR – fat to protein ratio; SFA, HCFA, VFA, UFA, MUFA, PUFA – saturated, hypercholesterolaemic, volatile, unsaturated, monounsaturated, and polyunsaturated fatty acids, respectively
Table 2. Effect of cow negative energy balance (NEB) on the proportion of saturated (SFA) and unsaturated (UFA) fatty acids

<table>
<thead>
<tr>
<th>Factor</th>
<th>Level</th>
<th>SFA (%)</th>
<th>UFA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEB</td>
<td>YES</td>
<td>73.80 ± 0.398(^A)</td>
<td>26.20 ± 0.398(^A)</td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td>75.93 ± 0.516(^B)</td>
<td>24.07 ± 0.516(^B)</td>
</tr>
</tbody>
</table>

YES – within the NEB period; NO – NEB period overcome; \(^A, B\) different superscript letters confirm statistical significance of differences between rows at P < 0.01; LSM – Least Square Mean

Table 3. Effect of cow negative energy balance (NEB) on the proportion of hypercholesterolaemic (HCFA), volatile (VFA), monounsaturated (MUFA), and polyunsaturated fatty acids (PUFA) (LSM ± SE)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Level</th>
<th>SFA (%)</th>
<th>UFA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HCFA</td>
<td>VFA</td>
<td>MUFA</td>
</tr>
<tr>
<td>NEB</td>
<td>YES</td>
<td>43.54 ± 0.318(^A)</td>
<td>17.72 ± 0.578(^A)</td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td>41.68 ± 0.412(^B)</td>
<td>23.60 ± 0.750(^B)</td>
</tr>
</tbody>
</table>

YES – within the NEB period; NO – NEB period overcome; \(^A, B\) different superscript letters confirm statistical significance of differences between rows at P < 0.05; resp. P < 0.01; LSM – Least Square Mean
conflict with the EU legislation continuously emphasising and requiring an increase in the quality, health, and safety of agricultural and food products (Velčovská & Sadílek 2014). However, the human organism acquires these FA from other biological sources as well (Jokić et al. 2013; Staňková et al. 2013). Therefore, we can consider their decline in milk during lactation as an issue of lower importance compared to the HCFA proportion.

CONCLUSIONS

The finding that the overcoming of NEB caused a significantly lower proportion of HCFA is very important. The shorter the NEB, the longer the rest of lactation when cows will produce milk of higher quality. Therefore, the shortening of the NEB period will be positively reflected in the production of healthier milk with lower HFCA content. The results are applicable in the framework of dairy farm management, selection and breeding of dairy cattle breeds at the population level as well as in dairy plants processing raw cow’s milk as the basic human food.

Acknowledgments. We thank Mrs. Lois Russell for her editorial help with this manuscript.

References

Received for publication July 30, 2013
Accepted after corrections September 20, 2013

Corresponding author:
Ing. Jaromír Ducháček, Ph.D., Česká zemědělská univerzita v Praze, Fakulta agrobiologie, potravinových a přírodních zdrojů, Kateda speciální zootechniky, Kamýcká 129, 165 21 Praha 6-Suchdol, Česká republika;
E-mail: duchacek@af.czu.cz