Evaluation of red clover isoflavone extract as a vaccine adjuvant for piglets against Haemophilus parasuis

XIAOHUA LI1,2, LONGXIN QIU1,2, GUO-HUA QIU1,2, XIAOYAN YANG1,2, XINTIAN ZHENG1,2*

1College of Life Science, Longyan University, Longyan, Fujian, P.R. China
2Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Veterinary Biotechnology, Fujian, P.R. China
*Corresponding author: zh-xintian@163.com

Abstract: Glässer’s disease of swine caused by Haemophilus parasuis (H. parasuis) is one of the major bacterial diseases affecting pig farms worldwide. Vaccination is a crucial measure for controlling the H. parasuis infection. Adjuvants are employed to enhance the immunity effects of inactivated vaccines or subunit vaccines. In the present study, a red clover isoflavone extract (RCIE) was investigated as an adjuvant for the H. parasuis inactivated vaccine. Thirty colostrum-deprived (CD) piglets (mixed-breed: Large White × Landrace) aged 15 days were vaccinated on days 0 and 14 with an inactivated H. parasuis vaccine with or without an adjuvant. The adjuvant groups’ vaccines were mixed with a high-dose RCIE (20 mg/ml), a middle-dose RCIE (10 mg/ml), a low-dose RCIE (5 mg/ml), or with Montanide Gel 01 (10%, v/v). Phosphate buffer saline (PBS) was also given as a blank control. Fourteen days after the booster immunisation, the piglets were challenged with H. parasuis LY02 (serotype 5). The IgG antibody, cytokines, T lymphocyte subpopulations, and clinical and pathological signs of the piglets were evaluated. The results showed that the RCIE enhanced the H. parasuis vaccine and elicited strong antibody levels as well as the cytokines IL-2, IL-4, and IFN-γ in serum, and the levels depended on the RCIE dose. Moreover, the piglets vaccinated with the inactivated LY02 containing the Middle-dose RCIE had a higher survival rate in the challenge experiments. In conclusion, RCIE can enhance the H. parasuis vaccine immunity by promoting titres of IgG antibody and by improving the Th1-type cellular immunity.

Keywords: adjuvant; Haemophilus parasuis; red clover isoflavone extract; vaccine; immunity

Haemophilus parasuis (H. parasuis), a coloniser of the upper respiratory tract of pigs, is a small Gram-negative bacterium belonging to the family Pasteurellaceae. The bacterium is a pathogen causing swine Glässer’s disease, which is prevalent in pig farms worldwide, including China (Zhao et al. 2018a). There are at least fifteen serotypes that have been identified using the heat-stable
antigen extract serotyping method (Angen et al. 2004), and the most prevalent serotypes in China are types 4 and 5 (Zhang et al. 2012; Wang et al. 2017; Zhao et al. 2018b). To control the H. parasuis infection, antibiotics are usually somewhat effective in killing the bacteria. However, antibiotic tolerance is difficult to be cleared from pigs, and this can lead to safety issues regarding food (Zhang et al. 2018; Zhao et al. 2018a). Therefore, vaccination is still important for controlling this disease. Several types of H. parasuis vaccines have been developed, including inactivated vaccines and subunit vaccines (Li et al. 2015; Guo et al. 2017; Zheng et al. 2017). These have been demonstrated to be safe and effective against homologous serovar strains in mice or pig model tests (Takahashi et al. 2001; Bak and Riising 2002; Martinez-Martinez et al. 2013; Liu et al. 2016). Exploiting better adjuvants is one of the most common approaches to enhancing the effect of H. parasuis vaccines against these strains. There are several types of adjuvants for the H. parasuis vaccine, including Freund’s adjuvant, mineral oil, and microspheres (Li et al. 2017a; Zheng et al. 2017). Chinese herbal medicinal ingredients (CHMI), including plant lectins and saponins (Granell et al. 2010; Liu et al. 2012), have attracted recent research interest regarding the development of new adjuvants for medical and veterinary usage due to the advantages of their extensive availability, low cost, reliable efficacy, and low risk of side effects and toxicity (Kong et al. 2004; Deng 2006; Kong et al. 2006).

In the present study, the adjuvant activity of a red clover isoflavone extract (RCIE) was evaluated for the inactivated H. parasuis vaccine in piglets. We found that the RCIE can improve the immunity of the inactivated H. parasuis vaccine.

MATERIAL AND METHODS

Material

The strain H. parasuis LY02 (serotype 5) (Li et al. 2015) was grown on a tryptic soy broth (TSB) (Oxoid, Basingstoke, England) or on a tryptic soy agar (TSA) (Oxoid, Basingstoke, England) with 10 μg/ml nicotinamide adenine dinucleotide (Oxoid, England) and 5% bovine serum (HyClone, Beijing, P.R. China) at 37 °C. The RCIE, whose isoflavones consisted of 10.2% formononetin, 9.6% biochanin A, 0.32% genistein, and 0.08% daidzein, was purchased from Naturalin Bio-Resources Co., Ltd (NAT-177; Hunan, Changsha, P.R. China). The Montanide Gel 01 was purchased from Seppic Inc. (Paris, France).

Preparation of the inoculum

To harvest the H. parasuis LY02, the bacteria were serially passaged in the TSB medium three times at 37 °C, 180 g for 18 hours. After centrifugation at 900 g for 10 min, the pellets were resuspended in PBS, and the concentration of the bacteria was adjusted to 5 × 10⁹ colony-forming units (CFU) per ml. The suspension was added with 0.4% formaldehyde and inactivated at 37 °C for 24 hours. To prepare the inoculum, the inactivated H. parasuis was homogenised with the RCIE or Montanide Gel 01 (Table 1).

Animal immunisation schedule

All the animal experiments were performed in strict accordance with the recommendations of the China Regulations for the Administration of Affairs Concerning Experimental Animals 1988. The protocol was approved by the Ethics Committee of Longyan College (Permit No. LY201802L). Thirty female colostrum-deprived (CD) piglets (Landrace × Large White) aged 15 days were purchased from Longyan, P.R. China. All the piglets were antibody negative against H. parasuis, Pseudorabies virus, hog cholera virus, and Porcine reproductive and respiratory syndrome virus. The piglets were randomly and evenly divided into six groups. The animals were given inoculations according to the list in Table 1. All the animals were inoculated twice with the same dose at intervals of 21 days. To ob-

Table 1. Vaccination list

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of animals</th>
<th>Inoculation</th>
<th>Adjuvants</th>
<th>Concentration of adjuvants</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>H. parasuis</td>
<td>RCIE</td>
<td>5 mg/ml</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>H. parasuis</td>
<td>RCIE</td>
<td>10 mg/ml</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>H. parasuis</td>
<td>RCIE</td>
<td>20 mg/ml</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>H. parasuis</td>
<td>Montanide Gel 01</td>
<td>10% (v/v)</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>H. parasuis</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>F</td>
<td>5</td>
<td>PBS</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
tain the sera, precaval vein blood samples were collected on days 0, 21, and 35, centrifuged at 600 g for 20 min, and then stored at −80 °C until analysis.

Determination titres of antibody and cytokines

The specific antibodies against *H. parasuis* were determined using an ELISA (enzyme-linked immunosorbent assay) kit (FEIKAI; Biotech Co., Ltd., Beijing, P.R. China) following the manufacturer’s instructions (Li et al. 2015). The cytokine levels of the IFN-γ, TNF-α, IL-2, and IL-4 in sera were determined using ELISA kits (Bogoo Biotech Co., Ltd., Shanghai, P.R. China). All the data were representative of three independent experiments.

Flow cytometric analysis of T lymphocyte subpopulations

To analyse the effects of the RCIE on the cellular immune response, the proportions of CD4+ and CD8 T lymphocyte subsets were assessed by flow cytometry. A red blood cell (RBC) lysis solution (BD Biosciences, San Diego, USA) was used to lyse the red blood cells, and the red supernatant was removed by centrifugation at 500 × g for 10 min and washing with PBS three times. The lymphocytes were subsequently treated with Alexa Fluor (AF)-labelled CD3 MAb (clone BB23-8E6-8C8, BD Biosciences, San Diego, USA), phycoerythrin-(PE-)labelled CD4 MAb (clone 74-12-4, BD Biosciences, San Diego, USA), and fluorescein isothiocyanate-(FITC-)labelled CD8 Mab (clone 76-2-11, BD Biosciences, San Diego, USA) antibodies in the dark for 30 min. After washing with PBS, the cells were fixed by incubation with a 5% paraformaldehyde solution in PBS containing 1% BSA and 0.1% sodium azide. All the samples were analysed by fluorescence profiles on a FACScan flow cytometer (BD Biosciences, San Diego, USA) using the SYSTEM II software (Coulter).

Challenge test

Fourteen days after the second immunisation, the piglets from each group were challenged intraperitoneally with a lethal dose of 7.5 × 10⁹ CFU (2 × LD₅₀) *H. parasuis* strain LY02 (serotype 5). The rectal temperatures and other clinical signs of piglets were monitored, and the morbidity and mortality were recorded for seven days post-challenge.

Clinicopathological evaluation

The temperatures of the piglets were measured rectally using a calibrated thermometer at the timepoints of 4 h and 24 h post challenge and then once a day during the monitoring period. The lesion scores were evaluated as described in a previous report (Olvera et al. 2011) and were calculated as the sum of the individual lesions/signs (lack of lesion = 0; presence of lesion = 1), catarrhal rhinitis, pulmonary consolidation, fibrin in the abdomen and/or ascites, fibrin in the thorax and/or hydrothorax, fluid and/or fibrin in the right elbow, in the left elbow, in the right knee, or in the left knee, and meningitis (ranging from 0 to 9). To confirm the association between the mortality and the *H. parasuis* infection, the bacterial isolates from the lesions were used in a 16s rDNA-based PCR (Polymerase chain reaction) as described previously (Zheng et al. 2017).

Statistical analysis

The experimental data were expressed as the means ± standard deviation (SD). The differences between the groups were analysed using a two-way analysis of variance (ANOVA) by the GraphPad Prism statistical software, v8.0. *P*-values of < 0.05 were considered statistically significant.

RESULTS

Evaluation of humoral immune responses

The specific IgG antibodies against *H. parasuis* were evaluated by ELISA. As shown in Figure 1, on days 21 and 35 post-inoculation, the high-dose and middle-dose RCIE groups and the Montanide Gel 01 group (groups A, B, and D) produced significantly higher titres of IgG than the RCIE-free groups (groups E and F), and there were significant differences (*P* < 0.01) between groups B and E. Moreover, the levels of IgG in groups A and B were
Figure 1. IgG titres of the piglets stimulated by the inactivated *H. parasuis* vaccines with different concentrations of RCIE. *P* < 0.05, **P** < 0.01, compared to group E significantly higher than those in group C. However, there was no difference in the IgG levels between groups A and B (*P* > 0.05).

Cytokine production

As shown in Figure 2, the cytokines IL-2, IL-4, IFN-γ, and TNF-α were detected in the sera. On day 21 post-inoculation (PI), the RCIE-added *H. parasuis* vaccine stimulated significantly higher titres of IL-2, IL-4, and IFN-γ compared with those in the adjuvant-free group (group E) and blank control (group F) (*P* < 0.05). However, on day 35 PI, there were no significant differences (*P* > 0.05) in these four cytokines between groups A, B, C, D, and E. Furthermore, the level of TNF-α was not significantly increased with the successive immunisations compared to the controls (*P* > 0.05).

T-cell subpopulation analysis

To evaluate the T-cell subset changes after inoculating the vaccine, the CD4+ and CD8+ T-cells were analysed by flow cytometry. As shown in Table 2, group B had the highest percentage of CD4+ and CD8+ lymphocyte subsets compared with the other groups. Moreover, the CD4+/CD8+ ratio in group F was the highest among the six groups, and group B had the highest ratio among the RCIE groups (groups A, B, and C). However, there were no significant differences between the groups A, B and C (*P* > 0.05).

Clinical and pathological evaluation

The clinical and pathological features are summarised in Table 3. Clinical symptoms including
strain antigen significantly increased the pigs’ survival rate ($P < 0.05$). Group B had the highest rate of protection (80%) against $H. parasuis$ LY02.

DISCUSSION

The red clover isoflavone extract (RCIE) consists mainly of formononetin, biochanin A, genistein, and daidzein. The extract is an important bio-activator, with multiple biological and pharmacological effects in animals and humans (Ren et al. 2001; $Setchell$ et al. 2001; $Jiang$ et al. 2011). The RCIE enhanced the immune effect of $H. parasuis$ vaccine in mice by increasing the phagocytosis by the macrophages (Zhu et al. 2008), and isoflavone can enhance the cellular and humoural immunity by promoting the $IGF-1R$ gene expression in the thymus of pigs ($Wang$ et al. 2002). Considering the low production cost and the adjuvant activity mentioned above, the RCIE was tested as an $H. parasuis$ vaccine adjuvant in a piglet model in the present study.

The protective immunity against extracellular bacteria mainly depends on the antibodies ($Aragon$ et al. 2019). Therefore, the promotion of the titres of IgG against $H. parasuis$ is extremely important for the adjuvants. In this study, we found that the titres of IgG in the vaccine groups with the RCIE were significantly higher than those in the RCIE-free groups, and the titres peaked in the group at the concentration of 10 mg/ml of RCIE (Figure 1). These results indicated that the RCIE-added $H. parasuis$ vaccine could significantly boost the humoural immunity of the piglets.

Protection of vaccinated pigs

To evaluate the protective immunity of this adjuvant, 14 days after the last immunisation, pigs from each group were challenged with a lethal dose of the LY02 strain. All the pigs in the blank control group (group F) were dead by about 52 h PI (Table 3). Group E had the highest rate of protection at 100%. Meanwhile, the pigs immunised with vaccines survived until the end of the observation period. The immunisation of the piglets with the LY02 strain antigen significantly increased the pigs’ survival rate ($P < 0.05$) against $H. parasuis$ LY02.

<table>
<thead>
<tr>
<th>Group</th>
<th>Temperature (°C)</th>
<th>Lesion score</th>
<th>Survival rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>40.5 ± 0.3ab</td>
<td>2.6 ± 0.89b</td>
<td>60%</td>
</tr>
<tr>
<td>B</td>
<td>39.7 ± 0.3b</td>
<td>1.8 ± 0.83b</td>
<td>80%</td>
</tr>
<tr>
<td>C</td>
<td>40.2 ± 0.5ab</td>
<td>2.4 ± 0.55b</td>
<td>60%</td>
</tr>
<tr>
<td>D</td>
<td>39.6 ± 0.2b</td>
<td>1.9 ± 0.89b</td>
<td>100%</td>
</tr>
<tr>
<td>E</td>
<td>40.7 ± 0.4ab</td>
<td>2.8 ± 0.84b</td>
<td>60%</td>
</tr>
<tr>
<td>F</td>
<td>41.3 ± 0.2a</td>
<td>7.2 ± 1.30a</td>
<td>0</td>
</tr>
</tbody>
</table>

The numbers marked by the same superscripts in each column are not statistically significantly different ($P < 0.05$)

Table 3. Comparison of the clinical features of the piglets after the challenge with $H. parasuis$

<table>
<thead>
<tr>
<th>Group</th>
<th>Temperature (°C)</th>
<th>Lesion score</th>
<th>Survival rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>24.90 ± 1.80b</td>
<td>27.11 ± 1.90b</td>
<td>60%</td>
</tr>
<tr>
<td>B</td>
<td>24.62 ± 1.37b</td>
<td>25.78 ± 1.64b</td>
<td>80%</td>
</tr>
<tr>
<td>C</td>
<td>25.54 ± 2.03b</td>
<td>22.20 ± 1.85b</td>
<td>60%</td>
</tr>
</tbody>
</table>

The data marked by the same superscripts in each row are not statistically significantly different ($P < 0.05$)

<table>
<thead>
<tr>
<th>Group</th>
<th>CD4+ lymphocyte subset %</th>
<th>CD8+ lymphocyte subset %</th>
<th>CD4+/CD8+ ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>24.90 ± 1.80b</td>
<td>27.11 ± 1.90b</td>
<td>1.29 ± 0.11</td>
</tr>
<tr>
<td>B</td>
<td>24.62 ± 1.37b</td>
<td>25.78 ± 1.64b</td>
<td>1.24 ± 0.07</td>
</tr>
<tr>
<td>C</td>
<td>25.54 ± 2.03b</td>
<td>22.20 ± 1.85b</td>
<td>1.33 ± 0.08</td>
</tr>
<tr>
<td>D</td>
<td>18.52 ± 0.76b</td>
<td>20.48 ± 1.53b</td>
<td>1.26 ± 0.06</td>
</tr>
<tr>
<td>E</td>
<td>17.46 ± 1.58b</td>
<td>17.42 ± 1.58b</td>
<td>1.41 ± 0.06</td>
</tr>
<tr>
<td>F</td>
<td>20.48 ± 1.53b</td>
<td>17.42 ± 1.58b</td>
<td>1.27 ± 0.05</td>
</tr>
</tbody>
</table>

The numbers marked by the same superscripts in each row are not statistically significantly different ($P < 0.05$)

Table 2. Comparison of T lymphocyte subset percentage of the piglets two weeks post booster immunisation

prostration and anorexia in the piglets were observed in all the groups with varying degrees within 24 h PI. The temperatures of all the challenged pigs were between 39.6 °C and 41.8 °C. The temperatures in the piglets of groups B and F were normal and were significantly lower than those of group E. All the pigs in group F were dead at 52 h PI, having shown additional clinical symptoms of incoordination, ataxia, anorexia, severe dyspnoea, and coughing. The survival rates of the pigs in the other groups ranged from 60% to 100%. The piglets that were euthanised on day 7 post-challenge had minor or moderate lesions when examined, with focal pneumonia and mild peritonitis. The pathological scores of the vaccinated pigs were significantly lower than those of the blank control (group F) ($P < 0.05$).
In conclusion, the RCIE enhanced the titres of the antibodies against *H. parasuis*, with higher titres of IgG and cytokines (IL-2, IFN-γ, and IL-4) in the RCIE-adjuvant groups.

Conflict of interest

The authors declare no conflict of interest.

REFERENCES

Kong X, Hu Y, Rui R, Wang D, Li X. Effects of Chinese herbal medicinal ingredients on peripheral lymphocyte prolif-

https://doi.org/10.17221/44/2020-VETMED

Received: February 17, 2020
Accepted: August 22, 2020