Measurement of titanium surface roughness created by non-conventional cutting technology

J. Rusnák¹, M. Zeleňák², J. Valíček², M. KADNÁR¹, S. Hloch³, P. Hlaváček², M. Kušnerová², R. Čep⁴, J. KADNÁR⁵

¹Faculty of Engineering, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
²Faculty of Mining and Geology, VŠB-Technical University of Ostrava, Ostrava, Czech Republic
³Faculty of Manufacturing Technologies, Technical University of Košice, Košice, Slovak Republic
⁴Faculty of Mechanical Engineering, VŠB-Technical University of Ostrava, Ostrava, Czech Republic
⁵Faculty of Materials Science and Technology, Slovak University of Technology in Bratislava, Bratislava, Slovak Republic

Abstract

The paper evaluates the surface roughness quality of the titanium samples created by abrasive waterjet (AWJ) and by CO₂ laser beam cuttings. The introduction describes the principle of the mechanical (contact) method as well as the roughness parameters used for the experiment results evaluation. The following parts summarise the experimental conditions and the measurement methodology. The emphasis of this work is laid on the comparison of machined surfaces final quality for the selected traverse speeds.

Keywords: surface properties; metrology; titanium alloy; roughness measurement

The standardisation of the surface roughness is both a technical and an economic task. Thus, its importance is increasing with the requirements for the precision, efficiency and reliability of the machine components and equipment. All the requirements mentioned depend on many parameters of roughness, mechanical characteristics of the functional surfaces

MATERIAL AND METHODS

The standardisation of the surface roughness is both a technical and an economic task. Thus, its importance is increasing with the requirements for the precision, efficiency and reliability of the machine components and equipment. All the requirements mentioned depend on many parameters of roughness, mechanical characteristics of the functional surfaces.
and the method of assembling. The main reason is to improve the lifetime and operational characteristics of the engineering products (Bumbálek et al. 1989).

According to the ČSN EN ISO 4287 (1999) standard, the following surface profiles are distinguished; the basic surface profile P (Fig. 1a), the surface waviness profile W (Fig. 1b) and the surface roughness profile R (Fig. 1c). The basic profile is an ideal smooth surface. The waviness profile is characterised by low frequencies and high amplitudes of the surface roughness. The roughness profile is characterised by high frequencies and low amplitudes of the surface roughness.

The middle arithmetic aberrance of the Ra profile is the primary parameter of the surface roughness. It is the average arithmetic value of absolute profile aberrances in the length range. It reflects the time and dimensional dependence of the surface roughness and is determined by the following Eq. 1:

$$Ra = \frac{1}{l_p} \int_0^{l_p} |y(x)| \, dx \quad \text{or} \quad Ra \approx \frac{1}{n} \sum_{i=1}^{n} |y(x_i)|$$

where
- l_p – measured length (m)
- $y(x)$ – profile dependence (Bumbálek et al. 1989)
- $y(x_i)$ – coordinates of n points (Bumbálek et al. 1989) in the length range, $i = 1, 2... n$

The mechanical (contact) method is currently the most used method mainly in engineering (Fig. 2). Its advantage is the direct measurement and the possibility of its use for all surface types (Hlaváček et al. 2009). The analogue recording of the surface topography which is the result of this method can be transformed into digital recording. The values measured by this method are also used in other types of methods (for comparison, etc.). The method also allows measuring the geometric profile of the surface repeatedly and identically (Zeleňák et al. 2009). However, the pressure generated on the prick sensor causes elastic and plastic deformation in the surface layer. The total deformation depends on the surface hardness. Thus, the prick sensor damages the measured surface which influences not only the evaluated surface but also the whole measuring.

As the initial material for the experimental purposes, unalloyed titanium was used with the specification ASTM B265-99 (1999), supplied in the annealed condition. The chemical and mechanical parameters of the titanium are given in Table 1.

Fig. 3 illustrates the cutting heads of the abrasive waterjet (AWJ) and CO$_2$ laser beams. The technological parameters for the cuttings are given in Table 2.

The surfaces created by AWJ and CO$_2$ laser beam cutting technologies were measured with a contact profilometer Surftest SJ 401 (Mitutoyo America Corporation, Aurora, USA) (Fig. 4). Each sample was measured in 19 depth traces. The results of the surface irregularities from each trace were obtained, analysed and statistically processed. The measurement was performed on five consecutive fundamental lengths ($l_p = 2.5$ mm) and the average value of the surface profile roughness Ra was determined from the results obtained.

RESULTS AND DISCUSSION

The comparison of the roughness parameters obtained by the AWJ and CO$_2$ laser cutting technologies (Fig. 5) shows that the AWJ technology achieved five times lower Ra values than were those obtained with CO$_2$ laser cutting, thus indicating that the AWJ
Table 1. Chemical and mechanical parameters of ASTM B265-99

<table>
<thead>
<tr>
<th>Element</th>
<th>0.2% max</th>
<th>0.08% max</th>
<th>0.18% max</th>
<th>0.015% max</th>
<th>0.03% max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.2% max</td>
<td>0.08% max</td>
<td>0.18% max</td>
<td>0.015% max</td>
<td>0.03% max</td>
</tr>
<tr>
<td>O</td>
<td>0.2% max</td>
<td>0.08% max</td>
<td>0.18% max</td>
<td>0.015% max</td>
<td>0.03% max</td>
</tr>
<tr>
<td>H</td>
<td>0.2% max</td>
<td>0.08% max</td>
<td>0.18% max</td>
<td>0.015% max</td>
<td>0.03% max</td>
</tr>
<tr>
<td>N</td>
<td>0.2% max</td>
<td>0.08% max</td>
<td>0.18% max</td>
<td>0.015% max</td>
<td>0.03% max</td>
</tr>
</tbody>
</table>

Table 2. Experimental parameters of abrasive waterjet (AWJ) and CO₂ laser beam cuttings

<table>
<thead>
<tr>
<th>Technological parameter</th>
<th>Sign</th>
<th>Unit</th>
<th>Value</th>
<th>CO₂ laser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid pressure</td>
<td>p</td>
<td>MPa</td>
<td>370</td>
<td>pressure of inert gas</td>
</tr>
<tr>
<td>Water orifice diameter</td>
<td>d_o</td>
<td>mm</td>
<td>0.3</td>
<td>power</td>
</tr>
<tr>
<td>Focusing tube diameter</td>
<td>d_f</td>
<td>mm</td>
<td>0.8</td>
<td>traverse speed</td>
</tr>
<tr>
<td>Focusing tube length</td>
<td>l_a</td>
<td>mm</td>
<td>76</td>
<td>standoff distance</td>
</tr>
<tr>
<td>Abrasive mass flow rate</td>
<td>m_a</td>
<td>g/min</td>
<td>250</td>
<td>diameter of beam</td>
</tr>
<tr>
<td>Standoff distance</td>
<td>z</td>
<td>mm</td>
<td>4</td>
<td>output speed of gas</td>
</tr>
<tr>
<td>Traverse speed</td>
<td>ν</td>
<td>mm/min</td>
<td>350, 450, 550</td>
<td>type of inert gas</td>
</tr>
<tr>
<td>Abrasive size</td>
<td>–</td>
<td>MESH</td>
<td>80</td>
<td>frequency</td>
</tr>
</tbody>
</table>

Fig. 3. Details of the cutting head with the target material (a) abrasive waterjet cutting (b) CO₂ laser beam cutting

Fig. 4. (a) Contact profilometer SURFTEST SJ 401, (b) photo of the surface measured in 19 lines
technology provides a significantly higher quality of the machined surfaces. The CO₂ laser beam cutting technology shows significant differences in the curve behaviour as compared to AWJ technology.

According to Fig. 5, the surface roughness increases with the increasing traverse speed. The behaviour of the curve in AWJ technology shows minimal differences and smooth behaviour at particular speeds, which indicates good optimisation of the cutting process and an appropriate setup of the input.

Acknowledgement

We would also like to thank the Moravian-Silesian Region 01737/2010/RRC for financial support.

References

Corresponding author:
doc. Ing. Milan Kadnár, Ph.D., Slovak University of Agriculture in Nitra, Faculty of Engineering, Department of Machine Design, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
phone: + 421 376 414 107, e-mail: milan.kadnar@uniag.sk