Influence of stubble quality and degree of soil-stubble contact on N$_2$O emission

Vanina Rosa Noemí CoSentino1,*, Mariana G. Minervini2, Miguel A. Taboada1,2

1Soils Institute, Natural Resources Research Center, Buenos Aires, Argentina
2National Research Council Scientific and Technical, Caba, Argentina

*Corresponding author: cosentino.vanina@inta.gob.ar

ABSTRACT

The organic residue position and C/N ratio regulate decomposition rate and, therefore, nitrogen (N) release to the soil. The N$_2$O emission from soil is produced by nitrification and denitrification processes. These processes are affected by the mineral N concentration, water filled pore space (WFPS) and soil temperature. The N$_2$O emission from soils covered by corn and soybean residues has been little studied so far. The aim of the present study was to evaluate the C/N ratio of corn and soybean residues and their contact degree with the soil on soil N$_2$O emissions.

A greenhouse experiment was conducted with a completely randomized design and N$_2$O emission was determined using closed chambers. The N$_2$O emissions were affected by the residue position and not by its origin (soybean = corn). Treatments with residue on the surface had the highest N$_2$O emissions at the beginning of the trial, while residue incorporation showed constant values of N$_2$O emission during the experiment. Soil N$_2$O emissions were explained by two controlling variables: the WFPS and the N-NO$_3$–soil concentration. The WFPS separated the emission values of N$_2$O into two groups (threshold value near 77% WFPS). When the WFPS exceeded the threshold value, the emissions of N$_2$O were partially explained by the concentration of N-NO$_3$–soil.

Keywords: greenhouse gas; soil matrix; crops

The decomposition rate of crop residues in a soil is controlled by the C/N ratio of the material, the contact between the soil matrix and the residues, and environmental factors, including temperature, water content and nutrient availability (Varela et al. 2014). Residues with less C/N ratio offer a less N-constrained environment for microorganism growth and reproduction than those with high C/N relation, as it decomposes and mineralizes faster (Gul and Whalen 2013).

Soil N$_2$O is generated by microbial nitrification and denitrification processes. These processes are regulated by N availability (mainly NO$_3$–) and soil water content among other factors (Steenwerth and Belina 2008, Cosentino et al. 2013). Soil N availability depends on the decomposition rate of the stubble. Therefore, soil-residue contact and stubble quality (C/N ratio) affect the dynamics (timing and magnitude) of N$_2$O emissions (Aulakh et al. 1991).

Stubble N$_2$O emission was studied in various crops (sugarcane, sorghum, cotton, rice and lettuce (Huang et al. 2004, Muhammad et al. 2010). Soybean and corn are the most important summer crops in the Argentine cropping region, so it was considered of great importance to study the effects of their residue decomposition on dynamic of N$_2$O soil emissions. The aim of the present study was to evaluate the effect of the C/N ratio of soybean and corn stubble and the degree of contact between crop residues and the soil matrix on soil N$_2$O emissions.
MATERIAL AND METHODS

A greenhouse experiment was conducted with a completely randomized design with factorial arrangement of three factors: factor A – sampling time (0, 10, 30, 90 and 150 days); factor B – stubble (corn stubble, soybean stubble, no stubble) and factor C – stubble position (incorporated in the soil and on the soil surface), each with four replicates. One-litre pots were filled with 1.1 kg top soil (0–20 cm) Typical Argiudol, O‘Higgins Series. The surface texture of the soil is loamy, while the sub-surface is silty clay loam. Its main limitation is poor drainage (INTA 2017). The soil had an organic carbon content of 19.96 g/kg (standard error (SE) = 0.5), N-NO$_3^-$ content of 64.42 mg/kg (SE = 9.8) and a pH in water value of 5.69 (SE = 0.2).

Soil, together with the amount of stubble (stem, leaf and pod) representative of that found in the field were placed in each of the pots. For the maize stubble treatment, 8.04 g of stubble per pot was placed either on surface or incorporated. This stubble amount corresponded to 9000 kg/ha maize yield which represented the average yield reported in the sampled field. For the soybean stubble treatment, 5.8 g of stubble per pot was placed either on surface or incorporated, this amount corresponded to an average soybean yield of 3500 kg/ha as was reported previously in the field. Before stubble was placed into the pots, it was oven-dried at 60°C during 48 h, sieved (1 mm mesh), and finally homogenized.

N$_2$O was measured in 130 cm-high and 160 cm-diameter closed chambers. Pots were used as the base of the chamber, covered with a tightly sealed press-fitted plastic pot during sampling. Three samples per chamber were taken using a vacuum pump, 0, 20 and 40 min after sealing the chamber, and placed in 10 mL vials.

Within seven days of sampling, N$_2$O was measured in the laboratory with a GC 6890 Agilent Technologies Network gas chromatograph, fitted with a 63Ni electron capture detector (Agilent Network GC System, AECD, Santa Clara, USA) and a 30 m x 530 μm x 25 μm Molsieve HP-Plot column. The oven, injector and detector temperatures were 150, 100 and 300°C, respectively. The carrier gas was N$_2$ and the injection volume was 0.5 cm3.

N$_2$O emission (f) was calculated as:

$$ f = \frac{\Delta C}{\Delta t} \times \frac{V}{A} \times \frac{m}{V_m} $$

Where: $\Delta C/\Delta t$ – change in N$_2$O concentration (ΔC) measured in parts per million (ppm) within the chamber during the incubation time (Δt) measured in minutes; V – volume of the chamber (0.998 dm3); A – area of soil covered by the camera (0.095 m2); m – N$_2$O molecular weight (44 g/mol); V_m – molar volume of N$_2$O (dm3/mol). The gas flow was calculated as the increase in concentration during the incubation period.

To evaluate the residue decomposition, at each sampling date, remaining undecomposed stubble in each pot was recovered and separated from the soil, making raisins water through a 0.5 mm sieve. The water acted as a soil dispersant separating it from stubble. The recovered residue was dried at 60°C for 48 h and weighed. Soil temperature at 10 cm depth and surface air temperature were measured in one pot at each sampling date. After N$_2$O sampling, soil samples were extracted from each pot and soil characteristics were determined in the laboratory. N-NO$_3^-$ concentration was determined colorimetrically (Keeney and Nelson 1982) and gravimetric water content (GWC) was determined by drying at 105°C to constant weight. At the finish of the experiment, a soil sample was taken inside each chamber to determine its bulk density (BD) by the cylinder method (100 cm3, 5 cm in diameter). Soil BD and particle density (assuming 2.65 g/cm3) were used to calculate the water filled pore space (%WFPS). Finally, C and N contents were determined by the dry combustion method using an automatic elemental analyzer (LECO CN Analyzer, St. Joseph, USA) for each of the crop residues, and the C/N ratio was calculated.

Data analysis was carried out using InfoStat software version 1.0, Group Infostat (Cordoba, Argentina).

RESULTS

Mean soil bulk density was 1.12 g/cm3 (SE = 0.03 g/cm3). Soybean stubble had a N and C concentration of 1.02% and 53.6%, respectively, with a C/N ratio of 52.46; while corn stubble had a N and C concentration of 0.52% and 55.7%, respectively, with a C/N ratio of 106.58. The WFPS values varied between 58% and 90% and the soil temperature ranged from 15°C to 26°C.

Maximum decomposition rates were recorded at the beginning of the experiment and then declined at different rates depending on the treatment,
affected mainly by the position of crop residues (on soil surface or incorporated in the soil matrix, Figure 1).

At the start of the experiment, treatments with both corn and soybean stubble on the surface showed high \(\text{N}_2\text{O} \) emission values, decreasing with time and a calculated relative area under the curve of 100% and 66.91%, respectively (Figure 2a,c). In treatments with incorporated corn or soybean residues, \(\text{N}_2\text{O} \) emission was moderate and constant throughout the experiment, with relative values of area under the curve of 55.44% and 54.79%, respectively (Figure 2b,d). In bare soil (without stubble) \(\text{N}_2\text{O} \) emission peaked at day 30 and the relative value of the area under the curve was very high (90.49%), showing the importance of \(\text{N}_2\text{O} \) emissions from bare soil (Figure 2e).

No relationship between soil N-\(\text{NO}_3^- \) concentration and \(\text{N}_2\text{O} \) emission in any treatment and any of the sampling dates (days 10, 30, 60 and 150) was found (Figure 3a). However, \(\text{N}_2\text{O} \) emission was low when WFPS was lower than 77% and highly variable when WFPS exceeded 77% (Figure 3b). When WFPS > 77%, \(\text{N}_2\text{O} \) emission was analysed separately.

When WFPS exceeded 77% (Figure 4), treatments with stubble on the surface (both corn and soybean) showed a positive linear relationship between \(\text{N}_2\text{O} \) emission and N-\(\text{NO}_3^- \) content (Figure 4a,c), with slopes that explained only 38% and 33% of \(\text{N}_2\text{O} \) emission variability for corn and soybean, respectively. The incorporated corn residue treatment could also be fitted into a linear function, with significantly lower slope but higher coefficient of determination (43%; Figure 4b). No relationships were found in the incorporated soybean residue and in the soil without stubble application (Figure 4d,e).

DISCUSSION

Mean BD of the soil in the pots was significantly lower than that of the field where the soil was obtained (1.12 (SE = 0.03) g/cm\(^3\) vs. 1.4 (SE = 0.05) g/cm\(^3\), respectively), possibly due to the fact that the soil in the pots had been sieved, causing particle loosening and an increase in total porosity (Materechera et al. 1994, Taboada et al. 2004).

During the experiment WFPS was > 58% and soil temperature >15°C. These soil conditions enabled a high decomposition rate throughout the experiment without limiting \(\text{N}_2\text{O} \) production (Keeney et al. 1979, Cosentino et al. 2013).

Residue decomposition rate was lower when residues were on the soil surface than when they
were incorporated in the soil for both soybean and corn residues. This was also shown by Lachnicht et al. (2004) and Khalil et al. (2005) in greenhouse experiments and in field experiments by Burgess et al. (2002). This higher decomposition rate was associated with the greater surface/volume ratio in the soil with incorporated residue which determined a closer contact between residue and soil microorganisms (Burgess et al. 2002).

Soil N-NO$_3^-$ availability did not appear to be linked to residue decomposition rates in any of the treatments (data not shown), possibly due to the high initial N immobilization by soil microorganisms. Indeed, it has been shown that when N concentration in residues is less than 2%, net N immobilization by soil microorganisms occurs (Trinsoutrot et al. 2000). Similarly, N$_2$O emission dynamics did not follow nitrate availability, as it was affected mainly by residue position and not by its quality.

Rochette (2010) divides factors that regulate N$_2$O emission in two groups: proximal and distal. Proximal factors, among which is the residue C/N ratio, are those that directly affect soil N$_2$O emission; while distal factors, e.g. contact between soil and residue, act indirectly. In this context, one would expect a greater influence of stubble quality (a proximal factor) on N$_2$O emissions than residue position (a distal factor). However, our results contradict this as residue position was more important than residue quality. Cumulative N$_2$O emissions were higher in treatments with stubble.

Figure 2. Mean nitrous oxide (N$_2$O) emission ($n = 4$) as a function of the sampling date and the respective area under the curve for different treatments. Capped vertical bars indicate standard errors of the mean.

Figure 3. Nitrous oxide (N$_2$O) emission as a function of (a) the soil nitrogen concentration in the form of nitrate (N-NO$_3^-$) and (b) water filled pore space (WFPS).
ble on the surface than in those with the residue incorporated in the soil. These results differ from those obtained by other authors (Baggs et al. 2000, Khalil et al. 2005) who found that the application of residues with high C/N ratio stimulate microbial immobilization of N released during degradation, which reduces N$_2$O emission. On the contrary, the application of N-rich (low C/N ratio) crop residues can increase soil N$_2$O emission.

The threshold WFPS value indicates the percentage of WFPS at which the relative contribution of nitrification and denitrification processes that determine N$_2$O emissions changes (Linn and Doran 1982). In our study, this WFPS value was near to 77%, which separated low N$_2$O emission values from the highly variable ones (Figure 3b). This value was higher than that obtained in the field (58.5%, Cosentino et al. 2013) and higher than the ones given by other authors (Linn and Doran 1982, Alvarez et al. 2012). The higher threshold value of the pot soil can be attributed to soil sieving, which reduced the size of aggregates and the proportion found under permanent anaerobiosis conditions. Sexstone et al. (1985) did not find permanent anaerobic zones when aggregates had less than 4 mm diameter. Thus, in our experiment, soil had to have a greater WFPS than that observed in the field (77% vs. 60%) for N$_2$O emissions to change from low and relatively constant (WFPS < 77%) to highly variable (WFPS > 77%).

The higher the soil moisture content, the greater the WFPS value and the higher the proportion of soil under anaerobiosis conditions as denitrification (anaerobic) prevails over nitrification (aerobic) resulting in higher N$_2$O emissions. Clayton et al. (1997) defined a WFPS value of 65% as the critical threshold at which N$_2$O emission increases significantly. In addition, Alvarez et al. (2012) determined in a Typic Haplustol, that the main factor determining N$_2$O emission was a WFPS threshold of 52%, indicating that different soils have different WFPS thresholds.

When WFPS exceeded 77%, the high variability of N$_2$O emissions (Figure 3b) was partly explained by N-NO$_3$– content in corn residue both on the surface and incorporated in the soil and soybean stubble on the surface (Figure 4). This coincides with results obtained in the field where N-NO$_3$– content was a third-ranking factor after soil temperature and WFPS percentage, controlling N$_2$O emissions (Cosentino et al. 2013), as was also observed in an Australian vertisol by Dalal et al. (2010).
doi: 10.17221/499/2016-PSE

Soil N$_2$O emission rate was affected by soil water filled pore space with a threshold value near to 77% that separated N$_2$O emissions in two groups. When the WFPS exceeded this threshold, N$_2$O emission was partially explained by the soil N-NO$_3^-$ concentration.

REFERENCES

