Stem shape is one of the most important subjects of forest mensuration. Traditional forest mensuration describes the stem shape using form quotients, form series, stem profiles, form factors, geometrical bodies (neiloid, paraboloid, cone). In the last 25 years, not only “multivariate morphometrics” but also “geometrical methods” have been developed in biology. These methods use a finite number of points, called landmarks, for description of an object’s shape. The shape is intuitively defined as general geometrical information that remains when the location, scale and rotational effects are filtered out of the object. In this investigation we used simplified Bookstein coordinates (stem shape diameters) and Procrustes coordinates for stem shape illustration. Data processing is given in Fig. 1.

Specific location of landmarks on a morphological stem curve enables to simplify the calculation of Bookstein coordinates since the effect of shifting and rotation need not to be removed (Křepela et al. 2005).

Two objects have the same shape if they can be transformed, rescaled and rotated to each other so that they match exactly, i.e. if the objects are similar. In morphometry, definition of average shape and structure of shape variability is often necessary in a dataset. For that purpose, we mostly use multivariate analysis of stem shape diameters, generalized Procrustes analysis (GPA) (Gower 1975, Ten Berge 1977 in Dryden, Mardia 1998) and principal components analysis.

Stem in traditional forest mensuration is the term related to relative form factors and relative form series. Šmelko (2000) on page 74 presents an example

Comparison of Norway spruce (*Picea abies* [L.] Karst.), Scots pine (*Pinus sylvestris* L.) and European larch (*Larix decidua* Mill.) stem shape by means of geometrical methods

M. Křepela¹, R. Petráš²

¹Faculty of Forestry and Environment, Czech University of Agriculture in Prague, Prague, Czech Republic
²National Forest Centre – Forest Research Institute Zvolen, Zvolen, Slovak Republic

ABSTRACT: In this article the stem shape is compared in three coniferous tree species: Norway spruce, Scots pine and European larch. Stem is investigated by means of geometrical methods. Simplified Bookstein coordinates (stem shape diameters) and Procrustes coordinates were used for variability investigation. The material, originating from the Czech and Slovak territories, involved in total 3,346 spruce stems, 3,082 pine stems and 1,403 larch stems. The accordance of mean stem vectors was assessed by means of Hotelling’s T^2 two-sample test. For stem shape diameters and Procrustes tangent coordinates, the variability was examined using the method of principal components analysis. The three most important principal components were diagrammatized and described. The relationship between the stem shape and its size was also investigated, and inflection points of morphological stem curve were described for all three tree species.

Keywords: Norway spruce; Scots pine; European larch; stem shape; stem shape diameters; Procrustes coordinates; principal components analysis
of two spruce stems. The first stem is 20 m, the other is 10 m high. These stems have the same relative form series and the same relative form factors at 1/10 of the height. The size of relative form series is removed by means of diameter at 1/10 of the height and in the case of relative form factors by means of the volume of an ideal cylinder. Then according to traditional dendrometry the shape of both stems is the same. But according to geometrical methods the situation is different. In Figs. 2 and 3 both stems, represented by means of stem shape diameters and Procrustes coordinates, are not obviously of the same shape.

The aim of this paper is to compare mean stem vectors for three coniferous tree species, to investigate shape variability by means of principal components and to attempt to explain an ecological impact on principal components. The relationship between shape and stem volume will also be investigated as well as inflection points of morphological stem curve.

MATERIAL AND METHODS

The empirical material involved 3,346 spruce stems, 3,082 pine stems and 1,403 larch stems originating from the Czech and Slovak Republic territories. This material is nearly identical with the material used by Petráš (1989) for the construction of a mathematical model for shape height of stems. In this article stem diameters over bark and stem heights were used for assessments. Diameters were measured in 2m or 1m sections, stump diameter and dbh were also measured. Diameters were measured to the nearest 0.001 m, and stem length and stump height were found out as well. Stem length was measured to the nearest 0.1 m, stump height to the nearest 0.01 m. Characteristics of the experimental material are given in Table 1.

Diameters in improper sections were interpolated. The lower stem part (stump diameter, diameters at
1 m, 1.3 m and 2 m, 3 m) was balanced by means of power function \(y = ax^k \), parameters of this function were derived for individual stems and then diameters at 1/100 and 1/40 of height were calculated. The remaining diameters (1/20, 1/10, 2/10,..., 9/10) were calculated by linear interpolation.

The stem can be described as a multidimensional object by means of “stem shape diameters”. Thus, the stem shape diameters \(b_{m} \) are the diameters at the relative sections (in this case \(m = 1/100, 1/40, 1/20, \ldots, 9/10 \) of the stem height) divided by the stem height \(h \), therefore \(b_{m} = d_{m}/h \).

Division by the height is in fact the elimination of the size from the object in the sense of intuitive definition of the shape.

Individual stem is therefore taken as a sample from \(n \) objects described by \(m \) dimensions (stem shape diameters \(b_{i,j} \)). Hence:

\[
b_{i} = (b_{i,1}, \ldots, b_{i,m})^{T}, i = 1, \ldots, n
\]

For this selection, it is possible to set a sample vector for mean values \(\hat{\mu} \) given by the following equation:

\[
\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} b_{i}
\]

(1)

Estimation of variance-covariance matrix is ruled by the following equation:

\[
S = \frac{1}{n - 1} \sum_{i=1}^{n} (b_{i} - \hat{\mu})(b_{i} - \hat{\mu})^{T}
\]

(2)

The test of hypothesis that the data are derived from multidimensional normal distribution

In this article, we use a test based on multidimensional skewness \(g_{1,m} \) and kurtosis \(g_{2,m} \), as described in Meloun and Militký (1998). We test the simultaneous validity of a hypothesis about symmetry \((H_{01}: g_{1,m} = 0) \) and about normality of kurtosis \((H_{02}: g_{2,m} = m(m + 2)) \) of the examined variable distribution. The estimation of sample skewness is given by the following equation:

\[
\hat{g}_{1,m} = \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} d_{ij}^{3}
\]

(3)

where: \(d_{ij} = (b_{i} - \hat{\mu})^{T} S^{-1}(b_{j} - \hat{\mu}) \) is squared Mahalanobis distance.

Considering the \(H_{01} \) hypothesis valid, then the test statistics

\[
U_{i} = \frac{n}{6} \hat{g}_{1,m}
\]

(4)

Table 1. Characteristics of experimental material: \(h \) – total tree height, \(d_{1.3} \) – overbark diameter at breast height, SD – standard deviation

<table>
<thead>
<tr>
<th></th>
<th>Norway spruce (n = 3,346)</th>
<th>Scots pine (n = 3,082)</th>
<th>European larch (n = 1,403)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h) (m)</td>
<td>(d_{1.3}) (cm)</td>
<td>(h) (m)</td>
<td>(d_{1.3}) (cm)</td>
</tr>
<tr>
<td>Mean</td>
<td>22.1</td>
<td>25.9</td>
<td>25.4</td>
</tr>
<tr>
<td>Median</td>
<td>24.4</td>
<td>24.5</td>
<td>26.4</td>
</tr>
<tr>
<td>SD</td>
<td>10.8</td>
<td>16.8</td>
<td>7.5</td>
</tr>
<tr>
<td>Min.</td>
<td>1.9</td>
<td>1.3</td>
<td>2.2</td>
</tr>
<tr>
<td>Max.</td>
<td>49.9</td>
<td>80.5</td>
<td>36.6</td>
</tr>
</tbody>
</table>
has asymptotically chi-square distribution

\[\chi^2_{m(m+1)/2(n+2)/6} \]

The estimation of sample kurtosis is given by the following equation:

\[\hat{g}_{2,m} = \frac{1}{n} \sum_{i=1}^{n} d_{ii} \] (5)

Considering the \(H_{02} \) hypothesis valid, then the test statistics:

\[U_2 = \left(\hat{g}_{2,m} - g_{2,2} \right) / (8m(m+2)/n)^{0.5} \] (6)

has asymptotically normal distribution \(N(0,1) \). This approximation can be used providing the following condition is satisfied:

\[\hat{g}_{2,m} > m(m+2)/(n-1)/(n+1) \] (7)

Multivariate test of equality of covariance matrices

For \(k \) multivariate populations, the hypothesis of equality of covariance matrices is

\(H_0: \Sigma_1 = \Sigma_2 = \ldots = \Sigma_k \)

The test \(\Sigma_1 = \Sigma_2 \) for two groups is treated as a special case by setting \(k = 2 \). We assume independent samples of size \(n_1, n_2, \ldots, n_k \) from multivariate normal distribution. To make the test, we calculate

\[M = \frac{|S_1|^{v_1/2} |S_2|^{v_2/2} \ldots |S_k|^{v_k/2}}{|S_p|^{v_p/2}} \] (8)

where:
- \(v_i = n_i - 1 \),
- \(S_i \) – the covariance matrix of the \(i \)-th sample,
- \(S_p \) – the pooled sample covariance matrix.

If \(S_1 = S_2 = \ldots = S_k \), then \(M = 1 \). As the disparity between \(S_i \) and \(S_p \) increases, \(M \) approaches zero.

Box (1949, 1950) in Rencher (2002) gave \(\chi^2 \) approximation for the distribution of \(M \). This test is referred to as Box’s \(M \)-test. We calculate

\[c_1 = \left(\frac{\hat{k}}{\sum_{j=1}^{k} v_j} - \frac{1}{\sum_{j=1}^{k} v_j} \right) \left[\frac{2m^2 + 3m - 1}{6(m+1)(k-1)} \right] \] (9)

then

\[u = -2(1 - c_1) \ln M \] has approximately \(\chi^2_{k-1} \) distribution,

where: \(M \) – defined in (8),

and

\[\ln M = \frac{1}{2} \sum_{j=1}^{k} v_j \ln|S_j| - \frac{1}{2} \left(\sum_{j=1}^{k} v_j \right) \ln|S_p| \] (10)

We reject \(H_{02} \) if \(u > \chi^2_{k-1}(m+1)/2(\alpha) \)

The test of the hypothesis that the mean vectors are equal

Consider two independent random samples \(b_{x,1}, \ldots, b_{x,m} \) and \(b_{y,1}, \ldots, b_{y,n} \). The vectors \(b_i = (b_{i,1}, \ldots, b_{i,m})^T \), \(i = 1, \ldots, n \) are stem shape diameters. In this case \(m = 12 \) and \(n = 3,346 \) for Norway spruce, 3,082 for Scots pine and 1,403 for European larch. The test is provided for three pairs of tree species. We expect that stems from these populations have mean shapes \(\mu_x \) and \(\mu_y \).

The test of the hypothesis on mean vectors equality \(H_1: \mu_x = \mu_y \) versus \(H_1: \mu_x \neq \mu_y \) can be carried out using Hotelling’s \(T^2 \) two-sample test. Let us use the following test statistics:

\[F_{stat} = \frac{n_1 n_2 (n_1 + n_2 - m - 1)}{(n_1 + n_2)(n_1 + n_2 - 2)m} (\mu_x - \mu_y)^T S_p^{-1} (\mu_x - \mu_y) \] (11)

where:

\[S_p = (n_1 - 1) S_1 + (n_2 - 1) S_2 \]

is the pooled variance-covariance matrix and \(S_1 \) and \(S_2 \) are variance-covariance matrices for individual samples.

We can express the squared Mahalanobis distance of equation (11) as

\[d_{xy} = (\mu_x - \mu_y)^T S_p^{-1} (\mu_x - \mu_y) = \sum_{j=1}^{m} s_j^2 / \lambda_j \] (13)

where:
- \(s_j = (\mu_x - \mu_y)^T \gamma_j \) – the scores in the direction of the observed group difference,
- \(\gamma_j \) – eigenvectors of matrix \(S_p \),
- \(\lambda_j \) – corresponding eigenvalues.

High values of \(s_j^2 / \lambda_j \) indicate which directions of shape variability are associated with the difference between the groups.

Provided the null hypothesis is valid, the test statistics \(F_{stat} \) has Fisher’s distribution with \(m \) and \(n_1 + n_2 - m - 1 \) degrees of freedom. However, this test can be used only in the case of normality of both sets and homogeneity of variance-covariance matrices.

The assumption of normality and equal covariances turned out to be questionable. Therefore, a Monte Carlo test was carried out with the null hypothesis that the groups had equal mean shapes. The data were randomly split into two groups of the same size as the groups in the data, and the test statistic \(F_{stat} \) was evaluated for \(B \) random permutations \(T_{xy}, \ldots, T_{xB} \). The ranking \(r \) of the observed test statistic \(F_{obs} \) was then used to give the \(p \)-value of the test:

\[p-value = 1 - \frac{r - 1}{B + 1} \]
Variability

The principal components analysis (PCA) was used to analyze the shape variability. In principal components analysis, we seek to maximize the variance of a linear combination of the variables. The first principal component is the linear combination with maximal variance; we are essentially searching for such a dimension that the observation maximally separates or around which the observation data are spread out. The second principal component is the linear combination with maximal variance in a direction orthogonal to the first principal component, and so on.

The orthogonal eigenvectors of variance-covariance matrix, denoted by \(y_i \), \(i = 1, 2, \ldots, j \), are the principal components of variance-covariance matrix with corresponding eigenvalues \(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_j \geq 0 \)

where \(j = \min (n-1, m) \).

The principal components are in fact transformed variables and the principal component (PC) score represents transformed objects. PC score for the \(i \)-th individual on the \(j \)-th principal component is given by

\[
s_{ij} = y_i^j (b_j - \hat{\mu})
\]

The standardized PC scores are

\[
c_{ij} = \frac{s_{ij}}{\sqrt{\lambda_j}}
\]

Allometry

Allometry involves the study of relationships between shape and size, and in particular the manner how shape depends on size. Traditional methods in allometry involve the fitting of linear or non-linear regression equations between size and shape measures. Allometry can also be investigated in our geometrical framework, using regression. Principal component score is chosen as a response variable and total tree height is used as the explanatory variable.

Inflection point of morphological stem curve

The landmarks are investigated by geometrical methods. When we want to get the morphological stem curve, we must balance these individual points. Balancing was provided by the same function as used by Petráš (1989) for the construction of a mathematical model for the stem shape of coniferous tree species:

\[
d(h_i) = b_1 h_i p_1 + b_2 h_i p_2 + b_3
\]

where: \(d_i \) – the stem diameter at height \(h_i \),
\(b_1, b_2, b_3, p_1, p_2 \) – parameters of the function.

This function has the only inflection point. In this point the morphological stem curve transfers from the convex to concave course.

If we want to find the height coordinates of inflection point \(I (d_i, h_i) \), we define the second function derivation equal to zero:

\[
d''(h_i) = b_1 p_1 (p_1 - 1) h_i^p_1 - 2 + b_2 p_2 (p_2 - 1) h_i^p_2 = 0
\]

then

\[
h_i = \frac{-b_1 p_1 (p_1 - 1)}{b_2 p_2 (p_2 - 1)}
\]

RESULTS AND DISCUSSION

All the following tests are calculated for stem shape diameters. In the case of Norway spruce, Scots pine, European larch, the sample skewness is \(\hat{g}_{12} = 54.14, 36.13 \), and 44.87, resp. The test statistics \(U_i \) thus equals 30,190, 18,560, 10,490, which is more than the critical value of \(\chi^2_{25} (0.05) = 909.49 \). Sample kurtosis is \(\hat{g}_{212} = 330.8, 285.4, 269.2 \). Test statistics \(U_2 = 256.9, 177.8, 103.4 \) and the critical value of standardized normal distribution on the significance level of 0.05 is 1.64. The criterion (7) is satisfied because \(\hat{g}_{212} = 167.9, 167.9, 167.8 \).

In both quantities, skewness and kurtosis, we therefore reject the coincidence with normal distribution.

We also did Box’s M-test for (a) Norway spruce and Scots pine sets, (b) Norway spruce and European larch sets, (c) Scots pine and European larch sets.

Test statistics:

(a) \(u = -2 (1 - c) \ln M = 6,692.3 > \chi^2_{25} (0.05) = 99.3, \)

\(p \text{-value} < 0.001 \). We reject \(H_0 \).

(b) \(u = -2 (1 - c) \ln M = 2,147.2 > \chi^2_{78} (0.05) = 99.3, \)

\(p \text{-value} < 0.001 \). We reject \(H_0 \).

(c) \(u = -2 (1 - c) \ln M = 2,913.5 > \chi^2_{78} (0.05) = 99.3, \)

\(p \text{-value} < 0.001 \). We reject \(H_0 \).

The Monte Carlo test was used for assessing the coincidence of mean vectors because of problems with normality and doubtfulness of equal variances. The coincidence of mean shapes was tested for (a) Norway spruce and Scots pine sets, (b) Norway spruce and European larch sets, (c) Scots pine and European larch sets. For each pair of samples, 2,000 random permutations were performed. In all three cases \(p \text{-value} < 0.01 \) and therefore we reject the null hypothesis about coincidence of mean vectors and accept the hypothesis about the difference between mean shape vectors.
Mean shapes for stem shape diameters are graphically represented in Fig. 4, and full Procrustes mean shapes for all three species are shown in Fig. 5. Only landmarks express the shape. However, these landmarks do not give a very clear illustration, therefore in the case of stem shape diameters they were balanced by function No. 16 and in the case of full Procrustes coordinates they were connected by means of abscissas. Both figures are very similar to each other. The landmarks are placed at $1/100 \ h$, $1/40 \ h$, $1/20 \ h$, $1/10 \ h$, $2/10 \ h$, ..., $9/10 \ h$. Norway spruce has the largest root swelling. The function of European larch behaviour is closer to Norway spruce than to Scots pine. Scots pine is wider between $1/40 \ h$ and $2/10 \ h$, and narrower than Norway spruce and European larch between $2/10 \ h$ and $6/10 \ h$ ($7/10 \ h$). Then Scots pine is markedly wider – the widest at $9/10 \ h$.

We also found intersection points of all three curves illustrated in Fig. 4 by means of FindRoot function in the programme Mathematica. The intersection point of the curve at about $0.2 \ h$ is noteworthy. Norway spruce with Scots pine intersects at $0.206 \ h$, Norway spruce with European larch at $0.2362 \ h$, Scots pine with European larch at $0.1987 \ h$.

The height coordinates of inflection points were calculated for all three tree species according to equation No. 18. They are for Norway spruce, Scots pine, and European larch: $0.29 \ h$, $0.43 \ h$ and $0.29 \ h$, resp. Demaerschalk and Kozak (1977) and Pérez et al. (1990) found the relative height Z of the inflection point to range between 0.20 and 0.25 and between 0.15 and 0.35, respectively. In another study by Allen (1993), who used an average of 0.30, the inflection point was found to vary between 0.29 and 0.32 for small and medium-sized Caribbean pine.
(Pinus caribaea Morelet var. hondurensis Barret and Golfari) trees.

The graphic effect of the first three principal components is the same in stem shape diameters as in Procrustes tangent coordinates. For better illustration and with regard to complex programmes prepared by Dryden (2000), we carried out an analysis of the first three principal components in Procrustes tangent coordinates as shown in Dryden and Mardia (1998); the definitions were introduced in the same way as in Křepela et al. (2004). Proportional expressions of variability explained by eigenvalues of the variance-covariance matrices of stem shape diameters and Procrustes tangent coordinates are given in Table 3.

Fig. 6 illustrates the graphic effect of the first three principal components for all three tree species. The first three principal components in all three sets show the same graphic effect.

The first principal component (PC 1 see Fig. 6) has a symmetrical graphical effect – the whole stem extension (narrowing) – and explains the great deal of variability (on average 95%). Its cause is not explainable from our data, but based on the preceding research (Křepela et al. 2001; Křepela 2002), we take it for a competition effect: above-level – the thicker trees, below-level – the narrower ones.

The second principal component (PC 2 see Fig. 6) has an asymmetrical graphical effect: the lower stem part versus the upper part. For Norway spruce up to 1/40 of one side and for 1/20 up to the other side. For European larch the boundary lies between 1/10 and 2/10 – and so higher than for Norway spruce. For Scots pine the boundary is at the highest level – at 2/10. The second principal component for Norway spruce expresses 3.9% of variability – the most for all the tree species. For spruce its effect is the highest at 1/100, and it is the effect of root swellings. For Norway spruce it is the lowest on the stem but is of the greatest importance.

The graphical effect of the third principal component (PC 3 see Fig. 6) changes its direction three times. At 1/100 one direction, at 1/40 null effect, then the reverse direction follows that is up to 4/10 for Norway spruce, up to 5/10 for European larch and up to 5/10 for pine, then the reverse effect follows up to 9/10 for Norway spruce and European larch. For Scots pine also with the exception of 6/10.

Table 2. F_{stat} partition of Equation (11) for 12 principal components, for three pairs of tree species, d_{ij} is the squared Mahalanobis distance

<table>
<thead>
<tr>
<th>No. of principal components</th>
<th>F_{stat} partition</th>
<th>F_{stat}</th>
<th>d_{ij}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norway spruce and Scots pine sets</td>
<td>1–6</td>
<td>0.09</td>
<td>10.51</td>
</tr>
<tr>
<td>7–12</td>
<td>10.21</td>
<td>0.59</td>
<td>1.78</td>
</tr>
<tr>
<td>Norway spruce and European larch sets</td>
<td>1–6</td>
<td>0.67</td>
<td>6.96</td>
</tr>
<tr>
<td>7–12</td>
<td>4.87</td>
<td>0.42</td>
<td>0.19</td>
</tr>
<tr>
<td>Scots pine and European larch sets</td>
<td>1–6</td>
<td>0.21</td>
<td>1.87</td>
</tr>
<tr>
<td>7–12</td>
<td>8.09</td>
<td>1.90</td>
<td>6.69</td>
</tr>
</tbody>
</table>

Table 3. Proportional expression of variability explained by eigenvalues of the variance-covariance matrices of stem shape diameters and Procrustes tangent coordinates from the investigated sets

<table>
<thead>
<tr>
<th>Eigenvalue</th>
<th>Norway spruce</th>
<th>Scots pine</th>
<th>European larch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stem shape diameters (%)</td>
<td>Procrustes tangent coordinates (%)</td>
<td>Stem shape diameters (%)</td>
<td>Procrustes tangent coordinates (%)</td>
</tr>
<tr>
<td>λ_1</td>
<td>93.8</td>
<td>93.7</td>
<td>96.1</td>
</tr>
<tr>
<td>λ_2</td>
<td>3.9</td>
<td>3.9</td>
<td>2.2</td>
</tr>
<tr>
<td>λ_3</td>
<td>1.3</td>
<td>1.3</td>
<td>1</td>
</tr>
</tbody>
</table>
Fig. 6. The first three principal components (PC) with configurations evaluated for 1 (PC 1) and 3 (PC 2, 3) standard deviations along each PC from the full Procrustes mean shape, including proportions of explained variability.

where we see the null graphical effect of the third principal component.

Another problem which principal components differ from each other the most was solved. Table 2 contains the components of test statistics F_{stat} calculated for individual principal components. Components of Mahalanobis distance s^2/λ indicate which directions of shape variability are associated with the difference between the groups. Spruce and pine differ the most from each other above all in the 4th principal component, pine and larch in the 3rd principal component.

We also investigated the relationship between principal component score and total tree height (allometry). Principal component score is chosen as a response variable, and total tree height is used as an explanatory variable. The Spearman coefficients of correlation for both variables are calculated in Table 4. Scots pine has the lowest dependence between shape and height. The Norway spruce correlation coefficient between 4 PC score and height is worth
of attention having the value 0.49, which is a moderate dependence. For larch the first three coefficients document a moderate dependence. Generally it can be said that the height influences the shape of all three tree species only very weakly and therefore the influences on the stem shape must be searched outside the stem.

CONCLUSION

This study showed that the stem shape of three investigated coniferous tree species (Norway spruce, Scots pine, European larch) differed. The term stem is understood in the sense of geometrical methods. In practice the simplified Bookstein coordinates (stem shape diameters) were used. Shape variability was investigated by the method of principal components using stem shape diameters and Procrustes tangent coordinates. The first principal component explains the prevailing part of variability, has a symmetrical graphical effect and we relate it to the competitive pressure onto individual trees. The second principal component has an asymmetrical graphical effect; we connect it with the effect of root swelling. The relationship between stem size (height) and shape showed to be weak, the weakest for Scots pine. Inflection points on the morphological stem curve were situated for Norway spruce, Scots pine, and European larch at: 0.29 h, 0.43 h and 0.29 h, resp.

References

M. Křepela1, R. Petráš2

1Fakulta lesnická a environmentální, Česká zemědělská univerzita v Praze, Praha, Česká republika
2Národné lesnícke centrum – Lesnícky výskumný ústav Zvolen, Zvolen, Slovenská republika

Klíčová slova: smrk ztepilý; borovice lesní; modřín evropský; tvar kmene; kmenové tvarové průměry; Prokrustovy souřadnice; analýza hlavních komponent

Ke zkoumání tvaru kmene byly z geometrických metod použity zjednodušené Booksteinovy souřadnice (kmenové tvarové průměry) a dále Prokrustovy souřadnice. Všechny statistické testy byly provedeny s kmenovými tvarovými průměry. Prokrustovy souřadnice byly použity zároveň k výzkumu variabilitní efektu jednotlivých hlavních komponent, a tedy jejich lepší grafickou vypovídací schopnost i srovnání obou geometrických metod.

Pokusný materiál tvořilo 3 346 kmenov smrku, 3 082 kmenov borovice a 1 403 kmenov modřín. Tento materiál pochází z území České a Slovenské republiky. Je téměř totožný s materiálem, který použil Petráš (1989) ke konstrukci matematického modelu tvrdu kmene jehličnatých dřevin.

Hranicní body byly umístěny na morfologickou křivku kmene do 1/100, 1/40, 1/20, 1/10, 2/10, ..., 9/10 výšky kmene. Podle schématu, znázorněného na

Received for publication March 16, 2006
Accepted after corrections April 14, 2006
obr. 1, byly vypočteny tvarové kmenové průměry a Prokrustovy souřadnice pro všechny kmeny.

Tvarová variabilita v rámci kmenových tvarových průměrů a Prokrustových souřadnic byla zkoumána pomocí metody hlavních komponent. Přehled výsledků podává obr. 6 a tab. 3. Procenta vysvětlené variability pomocí hlavních komponent jsou pro kmenové tvarové průměry i pro Prokrustovy souřadnice téměř shodná. Také geometrické efekty prvních tří hlav- ních komponent jsou pro všechny tři dřeviny stejné. Elkologický vliv vyjádřený první hlavní komponentou způsobuje rozšířování (zužování) kmene po celé jeho délce. Stejného efektu jsou doc. Ing. Michal Křepela, Ph.D., Česká zemědělská univerzita v Praze, Fakulta lesnická a environmentální, 165 21 Praha-Suchdol, Česká republika

tel.: + 420 224 383 718, fax: + 420 220 923 132, e-mail: Krepela@fle.czu.cz