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Abstract: Understanding genetic diversity is a main key for crop improvement and genetic resource management. 
In this study, we aim to evaluate the genetic diversity of the released Malaysian rice varieties using single nucleotide 
polymorphism (SNP) markers. A total of 46 released Malaysian rice varieties were genotyped using 1536 SNP mar-
kers to evaluate their diversity. Out of 1536 SNPs, only 932 SNPs (60.7%) represented high quality alleles, whereas 
the remainder either failed to amplify or had low call rates across the samples. Analysis of the 932 SNPs revealed that 
a total of 16 SNPs were monomorphic. The analysis of the SNPs per chromosome revealed that the average of the 
polymorphic information content (PIC) value ranged from 0.173 for chromosome 12 to 0.259 for chromosome 11, 
with an average of 0.213 per locus. The genetic analysis of the 46 released Malaysian rice varieties using an unwei-
ghted pair group method with arithmetic mean (UPGMA) dendrogram revealed the presence of two major groups. 
The analysis was supported by the findings from the STRUCTURE analysis which indicated the ∆K value to be at the 
highest peak at K = 2, followed by K = 4. The pairwise genetic distance of the shared alleles showed that the value 
ranged from 0.000 (MR159  MR167) to 0.723 (MRIA  Setanjung), which suggested that MR159 and MR167 were 
identical, and that the highest dissimilarity was detected between MRIA 1 and Setanjung. The results of the study 
will be very useful for the variety identification, the proper management and conservation of the genetic resources, 
and the exploitation and utilisation in future breeding programmes.
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Genetic diversity is crucial for the improvement 
of numerous crop plants, including rice. Breed-
ers lean on the accessibility of the genetic diversity 
information to design their breeding programme 
in order to predict the genetic gain and heterosis 
level. A variety established with a broad genetic 
base can be useful to boost the plant performance, 
produce a high level of resistance against diseases 

and pests, and increase yield production under in-
numerable agro-climatic environments (Zhu et al. 
2000). Studying the genetic variation is very crucial 
for the varietal characterisation and identification, 
for the appropriate seed purity management for 
conservation and breeding purposes, and is even 
useful for plant varietal protection (PVP) purposes. 
Pejic et al. (1998) state that the genetic diversity 
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can be measured using several strategies such as a 
pedigree analysis, a morphological characterisation, 
and an analysis of the molecular markers. However, 
a pedigree analysis is impractical and unrealistic 
for measuring the genetic diversity of a target crop 
(Fufa et al. 2005). In addition, diversity based on the 
morphological characters produce unpredictable and 
inconsistent data since the morphological characters 
could be influenced by environmental conditions and 
agronomic practices (Marić et al. 2004).

DNA markers offer a preferred method to evaluate 
the genetic diversity and variation since the mark-
ers are not influenced by environmental factors or 
agronomic practices, are highly abundant in the 
genome, and are not obliged to previous lineage in-
formation (Bohn et al. 1999). Single nucleotide poly-
morphisms (SNPs) are one of the molecular markers 
that, in recent times, attained popularity owing to 
advancements in the field of genomics, particularly 
next-generation sequencing (NGS) platforms. NGS 
has revolutionised the molecular marker system 
where it has driven a shift from anonymous markers, 
such as random amplification of polymorphic DNA 
(RAPD), amplified fragment length polymorphism 
(AFLP) and simple sequence repeats (SSR), to the 
direct evaluation of the sequence variation, includ-
ing SNP genotyping. SNPs are glamorous markers 
in many ways, including their low rate of scoring 
errors, since no stutter bands appear in the SNPs 
like they do in SSRs. Furthermore, SNP markers are 
also amenable to high-throughput genotyping since 
the markers can be multiplexed depending on the 
genotyping platform, which leads to low operation 
costs per unit of data generated. Additionally, SNP 
high-throughput genotyping is also suitable for poor 
quality or degraded samples, such as deteriorated or 
ancient samples (Morin & McCarthy 2007; Helyar 
et al. 2011). Though showing superiority, in terms 
of informative level, the SNP marker was still below 
that of the SSR marker (Rosenberg et al. 2003). De-
spite this, more current studies demonstrated that 
SNPs can provide a lot of information for population 
structure analyses, outperforming the SSR markers 
(Liu et al. 2005). Even though the SSR markers were 
generally multiallelic at each locus, the individual 
SNPs were able to strongly segregate among the 
populations (Freamo et al. 2011).

In this study, we intend to resolve the diversity 
of the released Malaysian rice varieties using SNP 
markers. To date, more than 40 varieties have been 
released since 1952. The findings of this study will 

be very useful for breeders to strategize their breed-
ing programme in order to predict the genetic gain. 
In addition, the results will also be very useful for 
conservation management programmes.

MATERIAL AND METHODS

Plant materials and DNA extraction. The seeds 
from each of the 46 released Malaysian rice varieties 
were germinated for approximately three weeks for 
DNA extraction purposes. The details of the varieties 
are summarised in Table 1. Young fresh leaves from 
three uniform individual plants of each variety were 
collected. Small fragments of the young leaves were 
transferred into a 96-well plate containing stainless 
steel beads and were instantly frozen at –80 °C for a 
minimum of one night. The frozen tissue was ground 
using a Tissue Lyser (Qiagen, Hilden, Germany) im-
mediately after the addition of 600 µl of an extraction 
buffer (2% CTAB, 100 mM Tris-HCl pH8, 20 mM 
EDTA, 1.4 M NaCl, 0.05% β-mercaptoethanol). The 
genomic DNA was extracted following the protocol 
as described by Mace et al. (2003). The DNA integrity 
was assessed using 0.8% agarose gels and the DNA 
concentration was measured using a Fluoraskan 
Ascent (Thermo Fisher Scientific, Waltham, United 
States). The DNA was diluted as recommend for 
the Illumina Golden Gate Genotyping Technology 
(GGGT).

SNP selection and genotyping. SNPs were mined 
from the genomes of three varieties, namely Nip-
ponbarre ( Japonica), 93-11 (Indica), and Indica 1 
(Habibuddin et al. 2013). A total of 1 536 SNPs were 
selected and used to construct an Illumina bead ar-
ray based on the GoldenGate assay (Illumina Inc., 
California, United States). The SNPs were chosen 
based on three criteria: (1) they were evenly spaced 
in the rice genome with approximately 1 SNP/150 kb, 
(2) they were preferably in the genic regions, and 
(3) there were no other SNPs within 70 bp. Genotyp-
ing was performed using the Illumina Golden Gate 
Genotyping Technology (GGGT). The identified SNPs 
along with their 100 bp upstream and downstream 
flanking sequences were submitted to Illumina for 
construction of custom made beadchip assays. 

The SNP genotyping was conducted follow the 
standard manufacturer’s protocol (Illumina’s BeadAr-
ray Express Reader). The hybridised custom-made 
beadchips were scanned using the Illumina iScan 
system. The generated raw data were loaded into 
GenomeStudio Software (Ver. 2011.1, Illumina) in 
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Table 1. The list of the rice varieties used in this study and their respective information

No. Variety Release 
year Parent Type

1 Malinja 1964 Siam 29 × Pebifun white rice
2 Mahsuri 1965 Mayang Ebos 80 × Taichung 65 white rice
3 Ria (Rebranding of IR8) 1966 Peta × Dee-Geo-Woo_Gen white rice
4 Bahagia 1968 Peta × Tangkai Rotan white rice
5 Murni 1972 Bahagia × Ria white rice
6 Masria 1972 IR8 × Muey Nahng 62M white glutinous
7 Jaya 1973 rebranding of C4-63 white rice
8 Sri Malaysia 1 1974 Peta × Tangkai white rice
9 Sri Malaysia II 1974 Ria × Pankhari 203 white rice
10 Pulut Malaysia I 1974 Pulut Sutera × Ria white glutinous
11 Setanjung 1979 IR22 × Pazudofusu white rice
12 Sekencang 1979 Jaya × Tadukan white rice
13 Sekembang 1979 Seribu Gantang × Ria 163 white rice
14 Kadaria 1981 (Seribu Gantang × TKM-6)///TKM-6 white rice
15 Pulut Siding 1981 Pulut Sutera × Ria white glutinous
16 Manik 1984 (Radin × Tadukan)///Radin Goi white rice
17 Muda 1984 RU 243 × BRJ51 white rice
18 Seberang 1984 MR 50 × IR 4215 white rice
19 Makmur 1985 Setanjung × Pongsu Seribu white rice
20 MR84 1986 CR261-7039-236 × MR 50 white rice
21 MR81 1988 MR24 × IR36 white rice
22 MR103 1990 RU 1217-432 × RU 1378-24-4 white rice
23 MR106 1990 (MR71 × IR 21912-131)/MR71 white rice
24 PH9 1990 MR23 × PULUT HITAM SIAM black glutinous
25 MR123 1991 Y776 × Y680 white rice
26 MR127 1991 Setanjung, Sekencang, Muda white rice
27 MR159 1995 Y833 × IR5491 white rice
28 MR167 1995 Y978/PTB18//Muda white rice
29 MR185 1995 Y1056 × MR133 white rice
30 MR211 1999 MR84 × Hoshiyutaka white rice
31 MRQ50 1999 Q34 × KDML white aromatic
32 MR219 2001 MR151 × MR137 white rice
33 MR220 2003 MR151 × MR137 white rice
34 MRQ74 2005 Q34 × KDML ///Kasturi white aromatic
35 MR232 2006 W60 × Y1157 white rice
36 MR220CL1 2010 IMI-TR-1770 × MR220 clearfield white rice 
37 MR220CL2 2010 IMI-TR-1770 × MR220 clearfield white rice 
38 MR253 2010 PTB 33 × SPM 92 white rice
39 MR263 2010 SPM 156 × MR221 white rice
40 MRQ76 2012 Q72 × Cuicak Wangi white aromatic
41 MR269 2012 P347 × Y1362 white rice
42 MR284 2015 ER3070 × MR220 white rice
43 Padi MARDI Siraj 297 (MR297) 2017 (MRQ76 × P446)/P446 white rice
44 MARDI Sempadan (MR303) 2018 (MR256 × MR253)/MR256 white rice
45 MARDI Sebernas (MR307) 2018 MR256 × P493 white rice
46 MRIA 1 2014 mutation of IR76569-259-1-2-1 aerobic rice
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order to call the allele at each locus. The cluster calls 
of each SNP were assigned to all the samples and were 
manually checked for an error before being rescored to 
designate the heterozygous and homozygous clusters. 
Then, the SNP reliability was assessed by analysing 
the call rates, the GenTrain and GenCall scores as 
generated by GenomeStudio software (Ver. 2011.1). 
As suggested by Illumina, a call rate of 95 was used 
as the threshold value for reliable SNPs, and a value 
of 0.4 was set as the threshold value for the GenTrain 
and GenCall scores. 

Data analysis. The allele scoring data were used 
as the input for PowerMarker (Ver. 3.25; Liu & Muse 
2005) in order to calculate the allele numbers, the 
polymorphic information content (PIC) values, the 
genetic diversity, the observed heterozygosities, 
and the maximum allele frequency of each SNP. 
Additionally, the pairwise genetic distance of each 
variety was also calculated using the same program. 
STRUCTURE (Ver. 2) software (Pritchard et al. 
2000) was used to assign the subpopulations of the 
genotypes. The assignment involved the calcula-
tion of the K (population number) values by vary-
ing the K values from 1 to 10 with 20 independent 
runs per K value, with a 50 000 burn-in period and 
100 000 Markov chain Monte Carlo (MCMC) repeti-
tions. The optimal value of K was calculated using 
STRUCTURE HARVESTER (Earl 2012) using the 
formula as described by Evanno et al. (2005) ∆K = 
mean ([L’’K])/sd[L(K)].

In addition, a UPGMA dendrogram tree was gener-
ated and visualised using MEGA7 (Kumar et al. 2016). 

RESULTS AND DISCUSSION

SNP distribution and characterisation. The 
genotyping and analysis of 1 536 SNPs showed that 
only 932 SNPs (60.7%) gave high quality allele scores, 
whereas the remaining SNPs either failed to am-
plify or had low call rates across the samples. The 
distribution of the 932 SNPs across the twelve rice 
chromosomes ranged from 53 SNPs on chromo-
some 11 to 121 SNPs on chromosome 1. Analysis 
of the 932 SNPs revealed a total of 16 SNPs were 
monomorphic. None of the monomorphic SNPs 
were detected on chromosomes 1, 4, 8, 11, or 12. 
The details of the SNP numbers and distribution 
are summarised in Figure 1. 

The analysis of the SNPs per chromosome revealed 
the mean PIC value ranged from 0.173 on chromo-
some 12 to 0.259 on chromosome 11, with an average 

of 0.213. A low PIC value was detected when the 
SNP was a bi-allelic marker, and the maximum PIC 
value reached 0.5. The PIC value provides informa-
tion about the polymorphism level of the genotypes 
under study. Values near 1 indicate a high degree 
of genetic diversity and are associated with a high 
number of alleles, whereas values less than 0.5 in-
dicate a low level of polymorphism (Becerra et al. 
2015). The mean PIC value suggested a low level of 
polymorphism among the studied genotypes. It was 
also notable that the obtained PIC value was lower 
than those in a previous study using SNP markers 
conducted by Xu et al. (2016), who found a value 
of 0.375, but was close to the PIC value obtained 
by Chen et al. (2011), who found a value of 0.257. 
The mean allele numbers by chromosome ranged 
from 1.944 on chromosome 7 to 2.000 on chromo-
somes 1, 4, 8, 11, and 12, with an average of 1.982. 
Low levels of heterozygosity were detected since 
the value ranged from 0.007 on chromosome 7 to 
0.026 on chromosome 10. The details of the SNPs 
characterised across the 12 rice chromosomes are 
summarised in Table 2. 

The SNPs represent the most abundant mark-
ers in the plant genomes. Unlike the SSR markers, 
SNP analyses can be performed without separation 
of the allele size and, therefore, it is an amenable 
high-throughput genotyping assay. Even though the 
SNPs showed a relatively low level of polymorphism 
compared to the SSR markers, the bi-allelic nature 
of the SNPs offers the advantage of lower error rates 
in the allele calling and results in the reproducibility 
across the laboratories. These advantages have led 
the SNP markers becoming the favourable markers 
for the varietal identification and diversity studies 

Figure 1. The single nucleotide polymorphisms (SNPs) 
distribution across the twelve chromosomes in rice
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in diverse crops such as rice (Reig-Valiente et al. 
2016), barley (Soleimani et al. 2003), wheat (Ren et 
al. 2013), and maize (Dao et al. 2014).

Genetic diversity and population structure of the 
released Malaysian rice varieties. The genetic analy-
sis of 46 released Malaysian rice varieties revealed 
the presence of two major groups (red and green) as 
revealed by the UPGMA dendrogram analysis and 
illustrated in Figure 2. The dendrogram tree showed 

that two varieties, namely MR269 and MRIA, were 
clustered in the red group, and the remaining varie-
ties were clustered in the green group. The analysis 
was supported by the findings from the STRUCTURE 
analysis which indicated the ∆K value to be at the 
highest peak at K = 2 (as described by Evanno et al. 
2005), followed by K = 4 (Figure 3). When K = 2, 
the varieties were similarly grouped to that in the 
dendrogram analysis where MRIA 1 and MR269 (the 

Table 2. The single nucleotide polymorphism characterisation based on the 12 rice chromosomes

Chromosome Major allele frequency Allele No. Gene diversity Heterozygosity PIC
1 0.844 2.000 0.237 0.008 0.200
2 0.816 1.990 0.259 0.010 0.213
3 0.854 1.973 0.225 0.019 0.191
4 0.803 2.000 0.271 0.008 0.220
5 0.804 1.973 0.268 0.009 0.217
6 0.801 1.971 0.269 0.012 0.218
7 0.860 1.944 0.208 0.007 0.175
8 0.791 2.000 0.299 0.017 0.245
9 0.802 1.946 0.273 0.024 0.223
10 0.791 1.985 0.283 0.026 0.227
11 0.756 2.000 0.324 0.020 0.259
12 0.870 2.000 0.203 0.019 0.173
Mean 0.816 1.982 0.260 0.015 0.213

PIC – polymorphic information content

Figure 2. An unweighted pair group me-
thod with an arithmetic mean dendrogram 
of 46 Malaysian rice varieties based on 
916 polymorphic single nucleotide poly-
morphism markers
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red group) were clustered separately from the other 
varieties (Figure 4A). Because MRIA 1 is the only 
aerobic rice variety used in this study, the variety 
was expected to be diverse from the other varie-
ties. MRIA 1 is derived from a chemical mutation 
of the IR76569-259-1-2-1 variety, whereas MR269 
is derived from the hybridisation of two advanced 
lines namely P347 × Y1362. The pedigree informa-
tion revealed that one of the parents (Y1362) is of 
Indian-origin, Pankhari203, which might contribute 

to the high variability of MR269. When K = 4, 3 sub-
clusters arose from the Green Cluster (subcluster II, 
III and IV) (Figure 4B). Interestingly, all the glutinous 
rice varieties (Masria, Pulut Malaysia 1, Pulut Siding 
and Pulut Hitam 9) were grouped in subcluster II. 
Meanwhile, all the aromatic rice varieties, namely 
MRQ50, MRQ74 and MRQ76, were clustered in 
subcluster III. This finding is in agreement with 
Roy et al. (2015) who also found all aromatic rice 
varieties being grouped in the same subcluster. In 
addition, most of the semi-dwarf high-yielding rice 
varieties were grouped in subcluster IV. As expected, 
the herbicide tolerant rice varieties, namely MR220-
CL1 and MR220-CL2, were grouped together with 
their respective parent, namely MR220. The list of 
the varieties within the subclusters is described in 
Table 3. The pairwise genetic distance of the shared 
alleles (data not shown) showed that the value ranged 
from 0.000 (MR159  MR167) to 0.723 (MRIA  Se-
tanjung), thus, suggesting that MR159 and MR167 are 
identical and that there was the highest dissimilarity 
between MRIA 1 and Setanjung according to the SNP 
dataset. Both MR159 and MR167 were introduced by 
the Malaysian government to Malaysian farmers in 
1995, whereas Setanjung and MRIA 1 were introduced 
in 1979 and 2014, respectively. Setanjung is a lowland 
rainfed rice variety while MRIA 1 is an aerobic rice 
variety. The principle component analysis (PCoA) 
was generated to visualise the variety coordinates 

Figure 3. Prediction of the number of K (number of popu-
lation structure), where the number of K represents the 
highest peak of ∆K, (∆K = m (|L’’ (K)|)/sd[L(K)]) 

Figure 4. The genetic structure diagrammatic generated by the STRUCTURE program based on K = 2 (highest peak of ∆K) (A) 
and K = 4 (second highest of ∆K) (B) using 916 polymorphic single nucleotide polymorphisms
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based on the genetic distance matrices (Figure 5). The 
PCoA was performed using a model-based approach as 
obtained by the STRUCTURE analysis, which revealed 
the existence of a large genetic diversity in the Malaysian 
rice varieties. The first three axes explained 34.79% of 
the cumulative variation (Table 4). Both the green and 
red groups showed distinct grouping in the PCoA. An 
AMOVA was performed on these two populations using 
a model-based approach. Among the two populations, 
69% variance was recorded; 29% variance was recorded 
among the individuals; and 2% variance was recorded 
within the individual (Table 5). The value suggests 
a high genetic variation between the differentiation 
of the two populations. The percentage of variance 
obtained in this study between the two population 
differentiations is quite similar to the percentage of 
variance obtained by Singh (2019). One possible reason 
for the low variance within the individual is the use of 
readily released rice varieties that have been adopted 
to high-selection pressure, instead of using the wild 

relative species of landraces cultivars (Thomson et al. 
2007). Although there is a diversity between the two 
groups, the lack of varieties in the red group is a major 
concern. Selection based on consumer preferences has 
also led to the reduction in the genetic basis of the 
released Malaysian rice varieties. The evaluation of 
crop diversity offers some acumen for plant breeders 
to develop and improve the cultivars for the desired 
traits or characteristics through breeding programmes 
without losing the genetic variability. Exploitation of the 
natural genetic diversity for food requirements began 
in the early era of agriculture. Now, such exploitation 
has focused on improving food crops for the expanding 
population (Ahuja & Jain 2015). However, the modern 
varieties of most crops, especially rice, were developed 
mainly to produce high yields, which led to a reduction 
in the genetic variation. Hence, a forthcoming breeding 
programme to diversify high yielding rice varieties is 
required for rice sustainability.

CONCLUSION

Assessment of the diversity and population struc-
ture using SNP markers is very useful for assisting 

Table 3. The list of the varieties in their respective subcluster

Subcluster Variety
I MRIA 1, MR269

II Makmur, Muda, MR159, MR167, Ria, MR127, Pulut Hitam 9, Pulut Malaysia, Masria, Sri Malaysia 2,  
Pulut Siding, MR123, MR106, MR103, MR263, Setanjung, MR232, MR253, Manik, MR185, MR84 

III Malinja, Bahagia, Kadaria, Jaya Malaysia, Mahsuri, Sekencang, Sri Malaysia 1, MRQ76, MRQ50, 
Sekembang, MRQ74, Murni, Seberang, MR81, MR297

IV MR211, MR220, MR220-CL1, MR220-CL2, MR219, MR284, MR307, MR303

Table 4. The percentage of the variation explained by the 
first three axes

Axis 1 2 3
% 17.98  9.39  7.39
Cumulative % 17.98 27.36 34.76

Table 5. The summary of the AMOVA obtained by the STRUCTURE program and a model-based approach

Source df SS MS Est. var. %
Among populations 1 5372.736 5372.736 225.471 69
Among individuals 136 26753.318 196.716 95.048 29
Within individuals 138 913.500 6.620 6.620 2
Total 275 33039.554 327.138 100

df – degrees of freedom; SS – sum of squares; MS – mean squares; Est. var. – estimate of variance

or
d.

 2

Principal Coordinates (PCoA)

Cluster 1

Cluster 2

C
oo

Coord. 1

Figure 5. The Principle Component Analysis (PCoA) of the 
released Malaysian rice varieties based on 916 polymorphic 
SNPs using a model-based approach
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in the classification and identification, the proper 
management and conservation of genetic resources, 
and for the utilisation of genetic resources in the 
forthcoming breeding programme. Additionally, a 
molecular based identification or characterisation 
must be applied to sustain the integrity and purity 
of the varieties, which will benefit Malaysian farm-
ers through the cultivation of high-quality seeds for 
better rice production.
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