Several species of the genus *Pteris* including *P. vittata* and *P. cretica* (PC) have been identified as arsenic hyperaccumulators (Luongo and Ma 2005). On the other hand, Meharg (2003) first reported *P. straminea* (PS) as a non-hyperaccumulator plant. The phytochelatins play a key role in As (arsenic) detoxification in non-hyperaccumulators (Raab et al. 2004). In contrast to non-hyperaccumulators, hyperaccumulators complex only 1–3% As with phytochelatins (Zhao et al. 2003, Vetterlein et al. 2009), because As detoxification is associated with the conversion of AsV to AsIII and As methylation (Gonzaga et al. 2006). The low As content in *Pteris* hyperaccumulators promotes plant growth; a high content inhibits growth (Cao et al. 2004). This finding confirms that As induces a hormetic response in these plants. A high level of detoxified As leads to its re-oxidation and to demethylation and As becomes toxic after degradation of complexes that substituted As$^{III/V}$ species with CH$_3$ in cells (Tu et al. 2003). The accumulation of As declines during senescence (Kertulis-Tartar et al. 2006). The result of senescence process is an irreversible senescence ending in apoptosis. A lack of

Supported by the Czech Science Foundation, Grant No. 17-10591S.
information limits our ability to characterize the metabolic processes of reversible and irreversible senescence in plants (Ding et al. 2005, Kobayashi et al. 2013). The effect of toxic elements including As on the metabolism of free amino acids (AAs) is connected with senescence (Pavlík et al. 2010, 2012, Pavlíková et al. 2014a, Zemanová et al. 2016) and also with CH₃ metabolism. CH₃ metabolism is determined by the transmethylation cycle (Zemanová et al. 2017), which involves the folate and methionine cycle as a donor for the biosynthesis of antioxidative metabolites (polyamines, tocopherols, phenylpropanoid metabolites including flavonoids, isoflavonoids, stilbenes etc.), cytokinins and mainly for substituted AsIII/V species with CH₃. The profiling AA content in Pteris is unknown, although the AA content is significantly affected by As content in hyperaccumulating ferns Pityrogramma calomelanos (Campos et al. 2016). To determine the non-stress metabolism of AAs in plants it is necessary to define reversible senescence in the Pteris genus. It is assumed that such senescence during the growing period differs between hyperaccumulator plants (PC) and non-hyperaccumulators (PS). For this reason, this study investigated AAs that are important for transport, stress and adaptive responses and also the changes in contents of selected elements during the growing period.

MATERIAL AND METHODS

Two fern species were cultivated in pots in a temperature- and humidity-controlled greenhouse (a 16 h day/8 h night cycle and a temperature cycle of 26°C day/18°C night, the soil moisture – 60% maximum water-holding capacity): Pteris cretica (L.) var. Albo-lineata (PC) and P. straminea (Mett. ex Baker) (PS). For cultivation of plants, 4.5 kg of modal chernozem soil (Prague – Suchdol, Czech Republic; pHKCl = 7.4, cation exchange capacity (CEC) = 258 mmol+/kg, Corg = 1.83%, As = 16 ± 1.7 mg/kg) was mixed with 0.5 g N, 0.16 g P and 0.4 g K per 1 kg of soil (applied in the form of NH₄NO₃ and K₂HPO₄). Plants were harvested 35, 83 and 160 days after planting.

Total element contents were determined after microwave-assisted low pressure acid-digestion (HNO₃:H₂O₂, 4:1, v/v) by ICP-OES (Agilent 720, Agilent Technologies Inc., Torrance, USA) and by AAS (Varian SpectrAA-280, Mulgrave, Australia) for K. Certified reference material (SRM 1515, apple leaves, Analytika, Prague, Czech Republic) was mineralized under the same conditions for quality assurance. The contents of free AAs were determined by GC-MS (Hewlett Packard 6890N/5975 MSD, Agilent Technologies, Torrance, USA) according to Pavlík et al. (2012) after their derivatization in extracts (1.0 g of fresh biomass, 15 mL of methanol and double distilled H₂O (7:3, v/v), 24 h) by EZ:faast set (Phenomenex, Santa Clara, USA).

The statistical analyses were performed using CANOCO 4.5 (ter Braak and Šmilauer 2002).

RESULTS AND DISCUSSION

The profile of free AAs and macro- and microelements in ferns is a significant indicator of reversible senescence. In our experiment, some AAs in Pteris plants were below the detection limit of gas chromatography (GC) or at very low concentrations during reversible senescence. The levels of proteinogenic AAs (methionine, histidine, and arginine) were below the detection limit for all sampling periods and in both ferns. Hydroxyproline, which is generated after protein degradation during senescence, was not detected. Similarly, sarcosine, which is found in some hyperaccumulators, was not detected. This AA is linked with methyl metabolism and affects epigenetic changes induced by oxidative stress (Nikiforova et al. 2006, Zemanová et al. 2017). The contents of other identified AAs (γ-aminobutyric acid, lysine, α-aminoacidic acid, ornithine, tryptophan, valine and tyrosine) oscillated around the detection limit and therefore they were not evaluated using the principal component analysis (PCA).

The physiological processes of senescence affect the element content in plants and the regulation of plant metabolism (catabolism and anabolism of AAs), thus determining the contents of free AAs (Figures 1–3). Senescence and oxidative stress are affected by toxic elements in associated processes connected with the metabolism of fatty acids (Pavlík et al. 2017) and with changes in phytohormone contents. Regulation of the expression of cytokinin genes affects the proteolysis of proteins, photosynthetic activity, gas exchange parameters, element uptake and AAs (Pavlíková et al. 2014a,b).
Antioxidative enzymes and metabolites containing assimilated C, N, S and P are important for plants in overcoming stress. Reductions in element assimilation as well as photosynthetic activity have a strong influence on the biosynthesis of stress metabolites, which accelerates the conversion from reversible to irreversible senescence. The depletion of assimilated metabolites leads to

Figure 1. Ordination diagram showing the results of principal component analysis (PCA) analysis of selected parameters in hyperaccumulator plant (PC) fronds. The first axis of the PCA analysis explained 66%, the first two axes 91%, and the first four axes together, 99.9% of the variability of all analysed data. Two vectors were not positively correlated if the angle between them was larger than 90°. A long vector for particular parameters indicates a strong effect on the results of the analysis, and vice versa. YDB – yield of fronds in dry biomass; Ni, As, Ca, Cu, S, Fe, P, Zn, Mg, K and Mn – total content of elements; concentration of free amino acids (AAs): Asp – aspartic acid; Asn – asparagine; Pro – proline; Glu – glutamic acid; Gln – glutamine; Ser – serine; Leu – leucine; Ile – isoleucine; Gly – glycine; Thr – threonine; Phe – phenylalanine; Ala – alanine

Figure 2. Ordination diagram showing the results of principal component analysis (PCA) analysis of selected parameters in non-hyperaccumulators (PS) fronds. The first axis of the PCA analysis explained 59%, the first two axes 96%, and the first four axes together, 100% of the variability of all analysed data. For note and parameter abbreviations see Figure 1
increased catabolic activity in the plant, in turn causing the disintegration of chlorophyll and the development of necrosis. Irreversible senescence plays a significant role in the As accumulation of hyperaccumulator plants of the genus Pteris (Tu et al. 2003, Kertulis-Tartar et al. 2006), and therefore element contents and AAs were determined during reversible senescence. The results of our experiment verified that element contents and AAs differ in the two phenotypes and in reversible senescence and the growing period of both tested plants (Figures 1–3).

The results of PCA analyses showed a significant effect of sampling period (35, 83 and 160 days) on parameters in fronds of both Pteris plants (Figures 1 and 2), as indicated by the different locations of points in the diagram and the high percentage of variability explained by the ordination axes. In Figures 1 and 2, the length and direction of the vectors of the studied parameters indicate links among themselves with respect to the sampling period. In fronds of PC all AAs except Asn were found at higher levels after 35 and 83 days (Figure 1). Free AAs were divided into two groups (group 1: Ser (serine), Gln (glutamine), Pro (proline), Thr (threonine), Gly (glycine), Ala (alanine), Ile (isoleucine) and Leu (leucine); group 2: Asp (aspartic acid), Glu (glutamic acid) and Phe (phenylalanine)) and were positively correlated with each other as the angle between the vectors for them was < 90°, and negatively correlated with Asn as the angle between the vectors for AAs and Asn was > 90°. The major AAs accumulated in the different sampling periods were Leu after 35 days, Asp, Glu and Phe after 83 days and Asn after 160 days. In the PS fern, the major AAs accumulated in the fronds were Gly after 35 days and Asn, Gln and Glu after 83 days. Asparagine, Gln, Glu and Asp have N remobilization/transport/storage function in senescing leaf cell (McAllister et al. 2012). According to Figure 2, AAs were not accumulated after 160 days. All free AAs except Gly were positively correlated with each other as the angle between the vectors for them was < 90°. These results revealed differences in the element contents and AA contents in PS and PC between sampling periods. High levels of Gly and its negative correlation with Ser were only found in PS. Their biosynthesis pathways are linked (Nunes-Nesi et al. 2008, Campos et al. 2016) and they are also products of significant metabolites connected with reversible senescence (accumulated Ser initiates a senescence; Zhu et al.
Vegetation growth reduced the element contents in fronds of the PS fern (Figure 2). On the other hand, the highest contents of all elements, especially As, Cu, Fe and Mg, were found in fronds of PC fern after 160 days. Copper and Fe are co-factors of the antioxidative metalloenzymes of superoxide dismutase and different cytochromes including Cyt P450 (Fernández-Ocaña et al. 2011, Fiore et al. 2012). The high level of Mg after 160 days showed that PC was at the start of reversible senescence (Figure 1). This finding was supported by the negative correlation between Mg and Glu contents. Glu is regulated by the feedback of Pro (Pavlíková et al. 2007). Its intermediate product glutamate-5-semaldehyde leads to chlorophyll biosynthesis via 5-aminolevulinate (Pavlíková and Levitsky 2004).

The reduction in the explanation of variability in PCA analyses of both Pteris plants together and the location of points showed the significant effect of different species especially in the late sampling period (Figure 3). The effect of species was shown by the first ordination axis, which placed individual pots of PS (except at 83 days) on the right side and pots of PC on the left side of the diagram. The length and direction of the vectors of the studied parameters indicate the association of free AA content as well as element content with respect to the sampling period and fern species. As for the individual ferns, all AAs were found at the highest levels after 35 and 83 days. On the other hand, the highest levels of all elements other than K were found after 160 days. The As content was positively correlated with other elements except K, as the angle between the vectors for these parameters was > 90°. A significant effect of species was evident in the contents of Cu, Mn (co-factors of antioxidative metalloenzymes; Fernández-Ocaña et al. 2011), S (antioxidative metabolite of glutathione – component ascorbate-glutathione cycle; Cao et al. 2004) and P (phospholipids – significant for semipermeability of membranes). These elements were accumulated more in PC compared to PS ferns (Figure 3). There were differences in the relationships between Glu and Mg between ferns, which were linked with chlorophyll content, gas exchange parameters and reversible senescence (Pavlíková et al. 2014a,b). These results confirmed the lower degree of adaptation of PS to As contamination and its lower effectiveness at senescence regulation compared to PC ferns. Both Pteris species are metallophytes, and, according to our results and the definition of Van der Ent et al. (2013), they can be classified as either a hyperaccumulator (PC) or a bioindicator (PS).

REFERENCES

Kobayashi N.I., Saito T., Iwata N., Ohmae Y., Iwata R., Tanoi K., Nakanishi T.M. (2013): Leaf senescence in rice due to magne-

Received on September 22, 2017
Accepted on October 10, 2017
Published online on October 20, 2017