Reducing erosion from forest roads and skid trails by management practices

M. AKBARIMEHR, R. NAGHDI

Department of Forestry, Faculty of Natural Resources, University of Guilan, Somehsara, Iran

ABSTRACT: A road network in forest lands provides easy access to forest resources for extraction, regeneration, protection and recreation activities. Erosion from forest roads and skid trails is a major concern in forest management due to the capability to cause adverse environmental effects. The objective of this paper is to introduce two methods for reducing erosion on forest roads and skid trails: water diversion and vegetation cover. Factors affecting erosion on forest roads and skid trails are climate, quality of forest road surfacing material, traffic, slope and vegetation cover. There are several management practices to mitigate the impact of logging and forest road and skid trail construction on stream water quality. Sediments delivered to streams from roads and skid trails lead to a number of dramatic effects on water quality and aquatic life. These management practices were found to be effective in controlling and reducing the runoff volume and soil erosion. Therefore, management and maintenance of forest roads and skid trails are essential elements to mitigate erosion.

Keywords: water diversion; vegetation cover; erosion; skid trails; management practices; sediment delivery; environmental effects; stream water

A road network in forest lands provides easy access to forest resources for extraction, regeneration, protection and recreation activities (Akay et al. 2008; Khalipoor et al. 2008). Skid trails are used in ground skidding systems and are recognized as the source of erosion (Jusoff, Majid 1996). Log extraction by skidders can lead to soil compaction, increase runoff, and cause deep rills and erosion (Ballard 2000; Wood et al. 2003; Najafi et al. 2009; Saffih-Hdadi et al. 2009; Ampoorter et al. 2010). Anthropogenic sediment sources on forest hill slopes include roads, skid trails and timber harvest units (Sidle et al. 2006; Litschert, MacDonald 2009). Timber harvest units represent the largest areas of anthropogenic disturbance and can increase erosion rates by one to five times relative to undisturbed areas (Litschert, MacDonald 2009). Roads contribute to sedimentation caused by erosion on cut and fill slopes, on the road surface and by stream diversion. Skid trails, like forest roads, can be sources of sedimentation of surface waters. Skid trails are used by conventional systems when rubber-tire skidders can cause rutting and puddling of soils. Also, they affect subsurface hydrology by increasing the soil bulk density and decreasing hydraulic conductivity (Edwin, Christopher 2002). Erosion from forest roads is a major concern in forest management due to the capability of causing adverse environmental effects. Roads accelerate erosion by increasing slope gradients and interrupting normal drainage patterns. Erosion produced from forest roads eventually reaches to streams and degrades the quality of water (Grace 2000; Grace, Clinton 2007). So, the study on forest road and skid trail erosion and use of some practices for reducing and preventing erosion seem to be necessary. The objective of the present study is to review the effective factors on soil erosion, introduce two methods (water diversion and vegetation cover) for preventing erosion on forest roads and skid trails (focus on management practices), and state the necessity of knowledge for future study.

Factors affecting erosion on forest roads and skid trails

Erosion can occur on forest roads and skid trails because of various factors. One of these factors

165
affecting surface erosion on roads and skid trails is climate such as rainfall intensity and duration, snowfall, wind etc. (Byblyuk et al. 2010; Fu et al. 2010). Other factors that can affect erosion are the quality of forest road surfacing material (asphalt road surfacing with the lowest effect and native road surfacing with ruts with the highest effect on erosion and with the 0.03 and 2 surfacing factors, respectively) and traffic (main highway and blocked road with the traffic factors of 120 and 0.1, respectively) especially during wet weather (Akay et al. 2008; Khalipoor et al. 2008). Also, slope steepness is an important factor in soil erosion by water. Steep roads and skid trails lead to greater erosion rates (Luce, Black 2001; Sidle et al. 2006; Byblyuk et al. 2010; Fu et al. 2010). Slope length also has a significant role in erosion. As Luce and Black (1999) found out, an increase in both road length and gradient can lead to increased erosion. They stated that erosion is proportional to the product of road length and the square of slope (E~LS^2). Finally, vegetation cover plays a significant role in controlling erosion, especially on cut slopes. The amount of erosion depends on the percentage of vegetation or rock cover (100% cover or non-cover by the cover factors of 0.1023 and 1, respectively). Vegetation cover can increase the stability of soil on steep slopes and during a rainfall of high intensity and prevent the soil erosion (Khalipoor et al. 2008; Fu et al. 2010; Byblyuk et al. 2010).

Two methods for reducing erosion

There are several management practices that are used in forestry operations to mitigate the impact of logging, forest road and skid trail construction on stream water quality. These practices are designed to achieve two significant objectives: to control erosion and to minimize the delivery of sediments to drainage lines (Wallbrink, Croke 2002). One of these practices is the use of drainage culverts on forest roads and water diversions (water bars) on skid trails just after logging. This structure was found to be effective in controlling and reducing the runoff volume and soil erosion (Croke

<table>
<thead>
<tr>
<th>Road grade (%)</th>
<th>GW, GP Aggregate surfacing</th>
<th>GM, GC</th>
<th>CH, CL</th>
<th>MH, SC, SM</th>
<th>SW, SP, ML</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>120</td>
<td>97</td>
<td>75</td>
<td>52</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>103</td>
<td>84</td>
<td>65</td>
<td>45</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>88</td>
<td>71</td>
<td>55</td>
<td>39</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>74</td>
<td>60</td>
<td>47</td>
<td>33</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>61</td>
<td>50</td>
<td>39</td>
<td>28</td>
<td>17</td>
</tr>
<tr>
<td>12</td>
<td>50</td>
<td>41</td>
<td>32</td>
<td>23</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>42</td>
<td>34</td>
<td>26</td>
<td>19</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 1. Guidelines for maximum distance between contiguous cross drains based on USCS soil erodibility groups (m) (Copstead et al. 1998)

<table>
<thead>
<tr>
<th>Road grade (%)</th>
<th>2–5</th>
<th>5–10</th>
<th>10–15</th>
<th>15–20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupt (1959)</td>
<td>41–47</td>
<td>24–41</td>
<td>18–24</td>
<td>14–18</td>
</tr>
<tr>
<td>Haussman and Emerson (1973)</td>
<td>95–150</td>
<td>60–95</td>
<td>35–60</td>
<td></td>
</tr>
<tr>
<td>Packer (1976)</td>
<td>23–51</td>
<td>17–44</td>
<td>11–39</td>
<td></td>
</tr>
<tr>
<td>Rothwell (1978)</td>
<td>46</td>
<td>31–61</td>
<td>15–46</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Maximum surface cross drain recommendation (m) for native soil surfaced roads (Copstead et al. 1998)
et al. 2001; Wallbrink, Croke 2002; Litschert, MacDonald 2009; Akbarimehr 2010). Furthermore, water diversions should be constructed on skid trails in appropriate intervals according to climate, soil type, slope that are shown in Tables 1 and 2. While Akbarimehr and Naghdi (2012) reported that 50 m was the most effective distance between water diversions in seep skid trails (more than 20% slope) and in skid trails with less than 20% slope, water diversions could be constructed at a greater distance of 75 m in length. Grace (2000) mentioned that sediment production decreased with increasing ground cover. He used native and exotic species in his study. The results of his study confirmed that treatments with high percent cover could mitigate the sediment yield. Also, some other studies confirmed that soil erosion has a relation with vegetation cover (Table 3) (Kasran, Nik 1994; Arnàez et al. 2004; Martinez-Zavala et al. 2008).

RESULTS AND DISCUSSION

As mentioned above and revealed by other authors like Croke et al. (2001), most of the erosion related to forest operations is typically from forest roads, skid trails and logging. Thus, drainage and rehabilitation of forest roads and skid trails are essential processes in the management of sediment movement and prevention of off-side impacts. So, post-harvest treatments of forest roads and skid trails are critical for reducing the delivery of sediments from harvest units to streams. As Wallbrink and Croke (2002) mentioned, the creation of water diversion is a very effective strategy to control the runoff and soil loss. On steep slopes, runoff affected by the slope gradient leads to increasing soil erosion (Fox, Bryan 1999). Water diversions are used in forestry operations to mitigate the impact of logging because water diversion is a major region of sediment deposition (Croke et al. 2001; Wallbrink, Croke 2002). Because of the cost involved in constructing and maintaining water diversions, it is important to determine their location. Akbarimehr (2010) compared water diversion locations and determined that the water diversions should be installed in 50 m intervals for steep slopes. Also, the distances between water diversions are related to precipitation, soil type, topography, type and extent of vegetation cover, traffic, lithology, etc., which are different in each site (Wallbrink, Croke 2002; Akbarimehr 2010). These studies showed that the distance between cross drainage and water diversions should be adjusted to site, climate and slope.

The most important effect of forest disturbance on slope stability is the loss of the cohesive soil strength when reinforcing roots die and decay. Ballard (2000), Keim and Skaugset (2003) found that disruption of the forest floor can expose mineral soil to raindrop impact, which can reduce infiltration capacity. Also, the combination of canopy removal and forest floor disturbance may result in excess overland flow during a rainfall of high intensity and affect a range of hydrological processes, including infiltration and erosion. Fast initial growth and quickly formed cover are essential to minimize the soil movement from roadside slopes. This is especially true of newly constructed roadside slopes. Soil on newly constructed roadside slopes is often loose and also is void of the vegetation cover that protects the surface soil from rain drop splash and surface flow (Grigal 2000; Grace 2000). But the presence of vegetation provides a cover of organic matter over the soil, provides surface roughness, improves the soil structure and thus increases infiltration capacity. All these factors could reduce the erosive impact of raindrops on the ground surface (Kasran, Nik 1994; De Baets et al. 2006). Grace (2000) found out that the high percent of vegetation cover exhibits the greatest mitigating effects on both sediment yield and runoff. Furthermore, a more significant contribution of plant vegetation to the stability is the additional strength imparted within the soil mantle by root systems. Thus the dense root network protects the surface from significant sediment transport (De Baets et al. 2006; Sidle 2008).

Then, skid trail and road construction removes the forest vegetation, disturbs the forest floor, damages the soil structure and finally increases runoff and soil erosion. Therefore, sediment and water control practices are essential to reduce the quantity of sediments introduced into forest stands and available for transport directly to

<table>
<thead>
<tr>
<th></th>
<th>(R)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arnàez et al. (2004)</td>
<td>0.076</td>
<td>0.070*</td>
</tr>
<tr>
<td>Martinez-Zavala et al. (2008)</td>
<td>-0.830</td>
<td>0.000*</td>
</tr>
<tr>
<td>Jordán-López et al. (2008)</td>
<td>0.685</td>
<td>0.014*</td>
</tr>
</tbody>
</table>

\(R \) – Spearman’s correlation coefficient, \(P \) – correlation significant level, *indicates significant values (\(P < 0.05 \))
stream systems. Sediments delivered to streams from roads and skid trails lead to a number of dramatic effects on water quality and aquatic life. Also, water must be drained before it concentrates to volumes that will cause erosion. Therefore, management and maintenance of forest roads and skid trails are essential elements to mitigate erosion. The construction of water diversions on skid trails after logging reduces subsequent sediment delivery. Furthermore, a reduction of rain splash by vegetation regrowth leads to a decrease in the soil loss. But additional work with detailed tracking of sediment movement from forest roads and skid trails and management practices are required to better understand erosion mitigation techniques on the roads and skid trails.

References

Received for publication December 6, 2010
Accepted after corrections January 26, 2012

Corresponding author:
Mananeh Akbarimehr, MSc, University of Guilan, Faculty of Natural Resources, Department of Forestry, P. O. Box 1144, Somehsara, Iran
e-mail: akbarimehr.mananeh@yahoo.com