Intensive agriculture requires high energy inputs, which makes cropping systems among the most important sources of greenhouse gases. Arable soils contribute greatly to N₂O emission in the atmosphere, resulting the most important source of N₂O due to the large use of nitrogen (N) fertilizers in order to increase crop yields (Bell et al. 2015). N represents an essential nutrient for all crops being involved in many physiological processes related to dry matter production. Fertilizers supply greater than the crop demand can lead to nitrogen loss from soil due to NO₃⁻-N leaching and N₂O/NO production by microbial processes (i.e., nitrification and denitrification), with a negative impact on climate and environment.

Improved crop management techniques have been suggested to reduce the soil N₂O emission and to improve crop production (Rees et al. 2013, Snyder et al. 2014), including the use of fertilizer added with nitrification inhibitor (NI) (Ranucci et al. 2011, Vitale et al. 2013) and organic manure (Ball et al. 2004). The use of NI-added fertilizers offers several advantages compared to conventional ones because it increases fertilizer use efficiency with positive effects on plant growth and crop yields and inhibits NH₄⁺-N oxidation, and in turn soil NO₃⁻-N content, thus limiting N₂O production. Organic manures, abounding in nutrients and labile carbon, have been widely used as soil fertilizers and

Fertilizer type influences tomato yield and soil N₂O emissions

Luca VITALE¹.*, Franca POLIMENO², Lucia OTTAIANO³, Giuseppe MAGLIONE², Anna TEDESCHI¹, Mauro MORI³, Anna De Marco⁴, Paul Di TOMMASI¹, Vincenzo MAGLIULO¹

¹National Research Council, Department of Biology, Agriculture and Food Sciences, Institute for Agricultural and Forestry Systems in the Mediterranean, Ercolano, Italy
²National Research Council, Department of Biology, Agriculture and Food Sciences, Institute for Animal Production System in Mediterranean Environment, Naples, Italy
³University of Naples Federico II, Department of Agronomy, Portici, Italy
⁴University of Naples Federico II, Department of Biology, Naples, Italy

*Corresponding author: luca.vitale@cnr.it

ABSTRACT

Improvements in crop management for a more sustainable agriculture are fundamental to reduce environmental impacts of cropland and to mitigate effects on global climate change. In this study three fertilization types – ammonium nitrate (control); mineral fertilizer added with a nitrification inhibitor (3,4-dimethylpyrazole phosphate (DMPP)), and an organo-mineral fertilizer (OM) – were tested on a tomato crop in order to evaluate effects both on crop production and soil N₂O emissions. Plants grown under OM fertilization had a greater relative growth rate compared to mineral fertilization, due to a higher net assimilation rate, which was related to a greater light interception rather than to a higher photosynthetic efficiency. OM fertilization determined the highest fruit production and lower soil N₂O fluxes compared to NH₄NO₃, although the lowest soil N₂O fluxes were found in response to mineral fertilizer added with a nitrification inhibitor. It can be concluded that organo-mineral fertilizer is a better nutrient source compared to mineral fertilizers able to improve crop yield and to mitigate soil N₂O emission.

Keywords: plant growth; nitrous oxide; emission factor; Mediterranean climate
amendments. Studies describe an enhancement of crops production and yield with organic fertilization, whereas contrasting results on the reduction in soil N\textsubscript{2}O emission have been reported (Kaiser and Ruser 2000, Ball et al. 2004, Yao et al. 2015).

The use of fertilizer added with a nitrification inhibitor could offer advantages compared to organic manure under conditions favouring N\textsubscript{2}O production. 3,4-dimethylpyrazole phosphate (DMPP) is a new generation nitrification inhibitor; it prevents NH\textsubscript{4}+ -N oxidation due to nitrification and in turn maintains a low soil NO\textsubscript{3}- -N concentration, which is needed for denitrification. Moreover, NH\textsubscript{4}+ -N concentration under high soil water content is elevated when DMPP is applied on soil (Bart et al. 2008). This should benefit crop yield and limit N losses.

A study on the comparison of effects of mineral fertilization added with NI and organic fertilization on crop production and soil N\textsubscript{2}O emission has been rarely performed, especially in agricultural systems of the Mediterranean area where abundant water is supplied by irrigation to crops to compensate the high air evaporative demand, thus favouring soil environmental conditions promoting N\textsubscript{2}O production.

The goal of this work was to compare the effects of different fertilizers on crop production and soil N\textsubscript{2}O emission from a tomato crop grown upon optimal water regime in Southern Italy under Mediterranean climate conditions.

MATERIAL AND METHODS

The experiment was carried out in Ponticelli (Naples), in Southern Italy, characterized by the Mediterranean climate with warm dry summers and mild wet winters. Soil texture is coarse due to its volcanic origin (Table 1). Tomato seedlings (Solanum lycopersicum L.) were transplanted on May 3, 2012 in rows spaced 1 m apart. Before transplanting, phosphorus (P) and potassium (K) fertilizers in the forms of calcium superphosphate and potassium sulfate were applied. The same total amount of 120 kg N/ha was applied twice to all plots along rows, split in two times: 50% at transplanting and 50% 30 days later. A randomized complete block experimental design with three fertilization treatments and three replications in 3 × 4 m plots was set up: ammonium nitrate (NH\textsubscript{4}NO\textsubscript{3}) (control plots); Entec 26 i.e. ammonium sulfate nitrate (26% N and 32% S) added with nitrification inhibitor (3,4 dimethyl-

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil type</td>
<td>sandy</td>
</tr>
<tr>
<td>Texture (%)</td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>8</td>
</tr>
<tr>
<td>Silt</td>
<td>12</td>
</tr>
<tr>
<td>Sand</td>
<td>80</td>
</tr>
<tr>
<td>Bulk density (g/cm(^3))</td>
<td>1.37</td>
</tr>
<tr>
<td>pH\textsubscript{H\textsubscript{2}O}</td>
<td>7.08</td>
</tr>
<tr>
<td>Electrical conductivity (mS/m)</td>
<td>14.9</td>
</tr>
<tr>
<td>Organic matter (g/kg)</td>
<td>2.54</td>
</tr>
<tr>
<td>Total nitrogen (g/kg)</td>
<td>1.86</td>
</tr>
</tbody>
</table>
The N_2O flux was estimated as:

$$F_{\text{N}_2\text{O}} (\mu g/m^2/h) = h (m) \times \frac{dC (\mu g/m^3 \text{N}_2\text{O-N})/dt (h)}{t = 0}$$

Where: h – height of chamber; C – N_2O concentration; t – time. dC/dt, i.e. the slope of the gas concentration curve, has been estimated by using a linear regression model. Only curves where the slope did not change sign over the observation period were taken into account, i.e.

$$\left| \frac{dC}{dt} \right|_{t = 0}/\left| \frac{dC}{dt} \right|_{t = 30} > 0 \text{ (Stolk et al. 2009).}$$

The N_2O emission factor (EF1) for each fertilizer was calculated according to IPCC (2007) as:

$$\text{EF1} (%) = \frac{f_c (\mu g ~ \text{N}_2\text{O-N/m}^2)}{N (\mu g/m^2)} \times 100$$

Where: f_c – cumulative flux calculated by linear interpolation; N – nitrogen amount supplied at transplanting.

Soil NH_4^+-N and NO_3^--N content, volumetric soil water content (SWC) and soil temperature (T_{soil}) were determined inside the chambers immediately after the flux measurement was completed. Soil samples were collected by a 5 cm diameter cylinder and taken from the upper 0–10 cm layer inside chambers after N_2O measurements. Samples were air-dried and sieved (2 mm). NH_4^+-N and NO_3^--N content was determined in a 2 mol/L KCl soil extract (1:10 w/v ratio) and measured by the UDK 169 Automatic Kjeldahl analyzer. Both SWC and T_{soil} were determined at a depth of 0–10 cm by using a TDR (Tektronix 1502B Metallic Cable Tester, Refurbished, Melrose, Scottish) and a thermocouple, respectively. Water filled pore space (WFPS) was calculated by using the SWC and bulk density (BD), on the basis of an average apparent density of the soil matrix of 2.65 g/cm3.

Statistical analysis. Statistical evaluation of data was performed by means of the Sigma-Plot graphical and statistical package (Sigma-Plot 12.2, Systat Software Inc. Release, San Joses, USA). Differences in plant growth and in C and N content were analysed by one-way ANOVA followed by the Duncan’s test. Differences in soil N_2O fluxes between treatments and chamber position were checked by two-way ANOVA followed by the Duncan’s test. Simple linear regressions were performed to assess the soil-related independent variables on soil gas emissions.

Figure 1. (a) Relative growth rate (RGR); (b) net assimilation rate (NAR); (c) leaf area ratio (LAR); (d) specific leaf area (SLA); (e) leaf mass ratio (LMR), and (f) fruit production for control (C), Entec (DMPP), and organo-mineral (O) plots. Data are means ($n = 9$) ± standard error. Different letters denote significant differences.
RESULTS AND DISCUSSION

Growth analysis and crop yield. The relative growth rate resulted highest (P < 0.05) in organo-mineral plots as compared to control and DMPP plots (Figure 1a). This was the result of higher net assimilation rate (P < 0.05) because the leaf area ratio was statistically similar among the three fertilization treatments (Figure 1b,c). The reason for the enhanced carbon gain by plant in OM plots could be related to a greater development of leaf area because the nitrogen content in leaves was statistically similar among treatments (Table 2), suggesting that the photosynthetic potential was the same for the plants grown upon different fertilizations. Moreover, a negative correlation was not observed between NAR and LAR that should occur when a higher NAR is achieved by greater investment in photosynthetic machinery, which decreases specific leaf area (Poorter and Remkes 1990). Indeed, LAR depends on the proportion of biomass allocated to leaves relative to the total plant mass and on how much leaf area a plant develops per unit leaf biomass, being LAR = LMR × SLA. No significant difference in SLA and LMR among treatment was observed (Figure 1d,e), but a greater leaf area development for plants grown upon OM fertilization compared to control and DMPP plants was detected (data not shown); from the above consideration, it follows that the highest NAR in OM plots was due to a greater light interception compared to plants grown upon mineral fertilization, that led to a better fresh fruits yield compared to control and DMPP plants (Figure 1f).

Soil N₂O emissions. In control and OM plots, N₂O fluxes measured from chambers positioned along plant rows were higher (P < 0.01) than those measured from chambers placed on the bottom of furrows (Figure 2a,c) due to a higher N availability (Figure 3a,c) for biological transformations. The positive correlation (P < 0.005) (control: N₂O-N = 30.1 + 0.07 NO₃-N, r² = 0.308; OM: N₂O-N = 25.0 + 0.39 NO₃-N, r² = 0.341) between N₂O fluxes and soil NO₃-N concentration, indicates that nitrification was the main biological process involved in

Table 2. Nitrogen (N) and carbon (C) content (g/kg) in stem and leaves of control, Entec (3,4-dimethylpyrazole phosphate (DMPP)), and organo-mineral plots. Data are means (n = 9) ± standard error

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Stems C</th>
<th>Stems N</th>
<th>Leaves C</th>
<th>Leaves N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>402.0 ± 51.8</td>
<td>22.2 ± 03.1</td>
<td>295.3 ± 29.4</td>
<td>45.8 ± 7.0</td>
</tr>
<tr>
<td>DMPP</td>
<td>356.9 ± 38.7</td>
<td>18.6 ± 02.2</td>
<td>291.2 ± 56.2</td>
<td>53.6 ± 2.5</td>
</tr>
<tr>
<td>Organo-mineral</td>
<td>274.2 ± 64.6</td>
<td>16.5 ± 03.5</td>
<td>203.9 ± 20.0</td>
<td>35.3 ± 13.1</td>
</tr>
</tbody>
</table>

Figure 2. Soil N₂O fluxes measured on ridges and furrows for (a) control; (b) Entec (3,4-dimethylpyrazole phosphate (DMPP)), and (c) organo-mineral plots. DAT – days after transplanting. Data are means (n = 3) ± standard error
N_2O production, NO$_3^-$-N being the end product of nitrification. This conclusion is supported also by WFPS values ranging from 40% and 70% (data not shown) that fell in the typical range for nitrification (Huang et al. 2014). In DMPP plots, no significant difference between N_2O fluxes measured from the two positions was found (Figure 2b), although NH$_4^+$-N content was higher along plant rows than in furrows, and fluxes were the lowest than those measured in control and OM plots. This indicates that under the recorded environmental conditions the 3,4-dimethylpyrazole phosphate (DMPP) was efficient to inhibit the nitrification, thus limiting N losses as N_2O. In fact, soil temperatures remained close to 20°C in all treatments (data not shown) beyond which the 3,4-dimethylpyrazole phosphate degradation is accelerated (Zerulla et al. 2001, Vitale et al. 2013). The effectiveness of DMPP to mitigate N_2O production determined an emission factor (EF1) smaller than 0.2% in both sites (C$_{ridge}$ = 0.45%, C$_{furrow}$ = 0.12%; DMPP$_{ridge}$ = 0.16%, DMPP$_{furrow}$ = 0.12%; OM$_{ridge}$ = 0.26%, OM$_{furrow}$ = 0.07%), comparable to the values reported in others studios (Ranucci et al. 2011, Vitale et al. 2013) and lower that those estimated for mineral and organo-mineral fertilizers, confirming the efficiency of 3,4-dimethylpyrazole phosphate into contrasting NH$_4^+$-N oxidation also in soils with coarse texture (Vitale et al. 2013).

The EF1 for organo-mineral fertilizer was lower than that for mineral fertilizer (C$_{ridge}$ = 0.45%; C$_{furrow}$ = 0.12%; DMPP$_{ridge}$ = 0.16%; DMPP$_{furrow}$ = 0.12%; OM$_{ridge}$ = 0.26%; OM$_{furrow}$ = 0.07%), in particular for the emissions measured on ridges.
Our data show that the organo-mineral fertilizers not only improved crop yield compared to mineral fertilizers but also contributed to a reduction in N$_2$O emission. Some authors (Kaiser and Ruser 2000, Yao et al. 2015) reported higher N$_2$O fluxes in soil treated with organic and organo-mineral compared to soils treated with mineral fertilizers. Conversely, our data confirm the results obtained by Ball et al. (2004) who measured lower N$_2$O fluxes from soils treated with organic fertilization using dried pellets compared to the mineral fertilization, due to an enhanced microbial respiration, as a consequence of higher labile carbon content, which limits oxygen availability and favours a complete denitrification to N$_2$. According to Tiedje et al. (1982), the organic carbon is more important than oxygen in determining denitrification. In our study, soil organic matter content and C/N ratio were low and similar for all treatments over the study period (about 1.4 g/kg and 7.5 g/kg, respectively). Thus, it was stated that the supply of dried organic manure did not increase denitrification, neither lead to an increased respiratory demand for oxygen, causing anaerobic sites and complete denitrification. Otherwise, a negative relationship between N$_2$O and NO$_3^-$-N content should have occurred if denitrification was the main process producing N$_2$O. The study hypothesizes that the lower N$_2$O fluxes in organo-mineral plots compared to mineral plots were due to the reduced C and N availability in the soil, as a consequence of slow mineralization of organic component, and to a better nutrient use efficiency by plants, that limited available N for biological transformations leading to N$_2$O evolution. It can be concluded that dried organic manure is useful to minimize the risk of large N$_2$O emissions from agricultural sites.

Acknowledgements

Authors thank K+S Agritolcura S.p.a. (Cesano Modeno MB, Italy) and Dr. Dante Francesco Giovine for the supply of Entec© fertilizer.

REFERENCES

Received on October 18, 2016
Accepted on March 21, 2017
Published online on March 31, 2017