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Micronutrient deficiency is widespread all over 
the world because of the generally low levels of 
available micronutrients in agricultural soils, 
and also because of increased nutrient demands 
from intensive cropping practices (Alloway 2008). 
Human activities such as tillage, crop residue 
recycling, fertilization, pesticide application, and 
waste disposal affect soil physiochemical proper-
ties, and will lead to changes of micronutrients in 
soils (Jiang et al. 2005, 2009).

Organic manures are significant sources of mi-
cronutrients in agroecosystems (Uprety et al. 2009, 
Xu et al. 2013). Long-term application of pig slurry 
(Nikoli and Matsi 2011), poultry litter (Pederson 
et al. 2002), or cattle manure (Benke et al. 2008, 
Abu-Zahra et al. 2010) have been corroborated to 

increase Cu and Zn contents substantially in the 
upper soil layer. Manure amendment increased 
soil DTPA-extractable Cu, Zn, Fe, and Mn, but 
did not significantly affect the total contents of 
micronutrients, after 19 years of cropping and 
fertilization in an Aquic Inceptisol in middle China 
(Li et al. 2010). 

Many mineral P fertilizers possess consider-
able amounts of micronutrients, thus they may 
also be significant sources of micronutrients in 
agroecosystems (Uprety et al. 2009). Chemical N 
fertilizer application and balanced application of 
NPK could increase (Li et al. 2007), or decrease 
(Rengel 2007), or have no significant effect (Behera 
and Singh 2009) on DTPA-extractable micronutri-
ents in soils. Increased yields achieved by mineral 
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NPK application may accelerate micronutrient 
removal from agroecosystems, causing imbalance 
in nutrient cycling, and hence, the variation in soil 
available micronutrient with different fertilization 
regimes was dependent on fertilizer varieties, soil 
physiochemical properties, crop absorptions, and 
recycling rates (Caliskan et al. 2008).

Many researches involving long-term fertilization 
focused on soil productivity, carbon and macronu-
trients, relative to micronutrients (Edmeades 2003, 
Yan and Gong 2010). From the early 1980’s, many 
long-term fertilization experiments were estab-
lished in China’s farmlands, but little information 
is available relating to long-term fertilization on 
plant available soil micronutrients. Black soils in 
Northeast China (43'50°N, 124'127°E) are fertile 
and productive, accounting for one-third of China’s 
total corn yield, thus, measures and studies related 
to the maintainability of soil fertility are of critical 
importance. It is basically clear that soil organic C, 
macronutrients, soil pH and oxidation-reduction 
conditions, water-holding capacity, soil fauna, 
microbes and enzyme change a lot under differ-
ent fertilization regimes (Zhu et al. 2007, Li et al. 
2009), and our hypothesis was that, with different 
fertilizer application, soil extractable micronutri-
ents would change along with soil physicochemical 
and biological properties mentioned above, and 
hence, the objectives were to examine the variation 
in soil DTPA-extractable micronutrients under 
chemical fertilizer application, cornstalk addition 
and farmyard manure amendment in a long-term 
field experiment with monoculture of corn, and 
to identify factors contributing to the variation 
in soil micronutrients.

MATERIAL AND METHODS

Site description. The study was conducted at 
an ongoing National Long-term Experimental 
Station for Soil Fertility Monitoring in Black Soil, 
located at Gongzhuling, China (43°30'N, 124°48'E). 
It is located in a continental temperate monsoon 
zone. The annual temperature ranges 4.0–5.0°C, 
annual precipitation ranges 500–650 mm, and an-
nual non-frost period ranges 125–140 days. The 
soil is classified as Halpic Phaeozem (FAO 1988).

A long-term fertilization experiment with mon-
oculture corn was established in 1980, includ-
ing six treatments: (1) CK – no fertilizer; (2) N 
only; (3) NP only; (4) NPK; (5) NPK plus corn-

stalk (SNPK), and (6) NPK plus farmyard manure 
(MNPK). Nutrient input was 165 kg N/ha, 36 kg 
P/ha, and 68.5 kg K/ha, with urea, (NH4)2HPO4, 
and KCl, and 7500 kg/ha/year air-dried cornstalk 
in SNPK, and 30 t/ha/year farmyard manure 
(a mixture of swine manure, plant residue and soil) 
in MNPK, respectively. The total amount of N, P 
and K input in the last three treatments was the 
same. The treatments were allocated in 100 m2 
plots, replicated thrice. Before the experiment was 
established, the soil properties in 0–20 cm soil layer 
were as follows, soil organic matter 23.3 g/kg, total 
N 1.40 g/kg, total P 0.39 g/kg, total K 22.1 g/kg; soil 
pH 7.3; the soil texture is loamy clay with particle 
size distribution 2.0–0.2 mm 5.50%; 0.2–0.02 mm 
32.81%; 0.02–0.002 mm 29.87%, and < 0.002 mm 
31.05%; the bulk density was 1.19 g/cm3, the total 
porosity was 53.91%. Except for the SNPK treatment, 
all the aboveground crop residues were removed 
after harvest. All plots were ploughed to a depth 
of 15–20 cm in autumn, and the field was disked 
and ridged in spring before sowing. The average 
corn yield during 2003 to 2010 was about 3490 and 
10 560 kg/ha for CK and MNPK treatments, respec-
tively, while the other four treatments harvested 
about 8500–9800 kg/ha corn per year.

Sampling and soil analyses. In October 2010, 
after harvesting, mixed soil samples were collected 
from the treatment plots at the depth of 0–20 cm. 
Soil samples were air-dried and ground to pass 
through 2-mm and 0.149-mm sieves. Soil micro-
nutrients were extracted with 0.005 mol/L DTPA, 
0.01 mol/L CaCl2, and 0.1 mol/L TEA at pH 7.3, 
the total contents were digested with 48% HF and 
concentrated HNO3. Both total and DTPA-Fe, Mn, 
Cu, and Zn were analyzed by atomic absorption 
spectrophotometer (AAS, Shimadzu, Japan). Soil 
pH and electrical conductivity (EC) were measured 
with electrodes in a 1:2.5 soil:water suspension. 
Exchangeable Ca, Mg, K and Na were determined 
by AAS. Soil organic C and total N were deter-
mined by using a Vario ELIII elemental analyzer 
(Elementar, Germany). Soil total P was determined 
with spectrophotometer at 410-nm wavelength, 
and K was measured by using flame photometer; 
ammoniac N and NO3

–-N were extracted with 
2 mol/L KCl and determined using magnesium 
oxide-devarda alloy method (Page 1982). China’s 
national standard soil reference materials for black 
soil (GBW07424 and GBW07458) were adopted 
through the digestion, extraction and analysis 
procedures as a part of the QA/QC protocol.
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Statistical analysis. The obtained data were 
analyzed with the SPSS (SPSS Inc., Chicago, USA) 
Version 11.5 for Windows, using one-way ANOVA 
and the Duncan’s pairwise comparison for means 
separation, and a significance level of P < 0.05 
was chosen for detecting significant differences.

RESULTS AND DISCUSSION

Chemical N application significantly increased 
DTPA-extractable Fe and Mn in soils. Between 
groups ANOVA showed that DTPA-Fe was signifi-
cantly greater in treatments NP and NPK than in the 
other treatments, and it was greater in N treatment 
than in SNPK treatment and CK. DTPA-Mn was 
significantly greater in treatments NP, NPK, and 
N than in the other three treatments (Figure 1). 
The variation in DTPA-Fe and Mn among different 
fertilization treatments was highly dependent on 
soil pH (Figure 2). The average soil pH values in 
treatments N, NP, and NPK were 6.72, 6.26, and 
6.22, respectively, which were lower relative to 
those in treatments SNPK, MNPK and CK (7.29, 
6.84 and 7.10, respectively). The initial soil pH at 
the beginning of the experiment was 7.3 in 1980, 
while it was 7.1 in the CK while sampling in 2010, 

and this reduction may be due to the atmospheric 
deposition of N in this region.

For one unit decrease of soil pH, DTPA-Fe or Mn 
was observed to increase about threefold. As cation 
exchange capacity (CEC) was increased along with 
increasing soil pH, it was negatively correlated 
(P < 0.01) with DTPA-Fe or Mn could also be ex-
pressed with linear regression equations (Figure 2).

For each soil pH unit increase, Fe2+, Fe3+, and 
Mn2+ decrease hundred to thousand fold. Thus, 
Fe and/or Mn deficiency is most often observed 
on high-pH and calcareous soils in arid regions 
(Havlin et al. 2004), and also in north China’s farm-
lands (Alloway 2008). Iron and Mn are soluble in 
the reduced state but readily oxidized in high pH 
soils, and so rendered highly unavailable in such 
soils (Alloway 2008). It was well documented that 
plant available Fe and Mn in soils decrease with 
increasing pH (Sharma et al. 2000). Darusman 
et al. (1991) reported that N fertilization for 
20 years caused a significant increase in available 
Fe and Mn, and a decrease in soil pH (5.2 vs. 6.2) 
in surface soil. Thus, chemical N fertilizer induced 
pH reduction was considered as the leading factor 
that increases DTPA-Fe and Mn in soils.

Most animal waste and crop residues contain 
small quantity of plant available Fe and Mn (Havlin 

Figure 1. DTPA-extractable micronutrient concentrations under different fertilization treatments. CK – no 
fertilization; N, P and K – 165 kg N/ha, 36 kg P/ha and 68.5 kg K/ha input; S – 7500 kg/ha cornstalk input; 
M – 30 t/ha farmyard manure input. Values above the column of a single figure followed by different letters are 
significantly different at P < 0.05 according to the Duncan’s multiple range test
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et al. 2004). Although farmyard manure amendment 
and cornstalk addition may increase Fe and Mn sol-
ubility through chelation reactions, the increased 
soil pH in treatments SNPK and MNPK decreased 
concentrations of DTPA-Fe and Mn in soil, relative 
to chemical N fertilization treatments (Figure 1). 
However, a 19-year experiment in middle China 
showed that cornstalk incorporated with mineral 
NPK (pH 8.0) did not significantly affect DTPA-Fe 
and Mn, as compared with mineral fertilization (pH 
8.06–8.54) and no fertilizer (pH 8.58) treatments (Li 
et al. 2010). Our results may be different due to the 
different soil pH and other physicochemical condi-
tions in the two regions.

Farmyard manure amendment significantly 
increased DTPA-extractable Cu and Zn in soils. 
DTPA-Cu and Zn were significantly increased 
in MNPK treatment, while NPK treatment had 
more DTPA-Cu than in SNPK treatment and CK. 
Concentrations of DTPA-Cu were about 4 times 
higher in MNPK treatment than in CK or SNPK 
treatment, while DTPA-Zn was about 4.8–6.5 times 
higher in MNPK treatment than in the other treat-
ments (Figure 1). The variations of DTPA-Cu and Zn 
mainly occurred as farmyard manure amendment 
induced changes in chemical properties, such as soil 
organic carbon (SOC), exchangeable cations and 
EC in soils. DTPA-Cu and Zn were significantly and 

positively correlated with SOC and EC (Figure 3). 
A case study with 98 soil samples in India also 
showed that DTPA-Cu and Zn were positively cor-
related with soil SOC and EC (Vijaynkumar et al. 
2011).

Organic amendments are often used for organic 
matter replenishment and to avoid application of 
high levels of chemical fertilizers. Although most 
animal wastes contain small quantity of plant 
available Cu and Zn, animals require metals as a 
part of their diet, so micronutrients like Cu and 
Zn are added to feedstuffs as growth promoters 
or diarrhea preventers (Carlson et al. 2008). Thus, 
long-term farmyard manure amendment tended 
to increase Cu and Zn in soils. A six year study 
showed that compost amendment resulted in an 
increase in all extractable micronutrients, as com-
pared with soil with mineral fertilization (Herencia 
et al. 2008). Relative to mineral fertilizer inputs, 
farmyard manure applied at 35 t/ha significantly 
increased soil levels of Cu and Zn, using the data 
from the Rothamsted experiments (Johnston 1997). 
Consequently, long-term application of farmyard 
manure significantly increased DTPA-Cu and Zn 
in soil in this study.

Cornstalk incorporated with mineral NPK did not 
significantly affect DTPA-Cu and Zn, as compared 
with CK, which was in accordance with a similar 
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Figure 2. Linear regression of DTPA-Fe and Mn with soil pH and cation exchange capacity
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study conducted in an Aquic Inceptisol for 19 years 
in middle China (Li et al. 2010). The main rea-
sons for lower DTPA-Cu and Zn in SNPK treat-
ment were deduced as follows, (i) comparatively 

lower total Cu and Zn in soil because of the small 
quantity of micronutrients in cornstalk (Figure 4), 
and (ii) comparatively higher soil pH (7.29) de-
creased the availability of soil micronutrients.
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Figure 3. Linear regression of DTPA-Cu and Zn with soil organic carbon and electrical conductivity
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Figure 4. Total micronutrient concentrations under different fertilization treatments. CK – no fertilization; N, P 
and K – 165 kg N/ha, 36 kg P/ha and 68.5 kg K/ha input; S – 7500 kg/ha cornstalk input; M – 30 t/ha farmyard 
manure input. Values above the column of a single figure followed by different letters are significantly different 
at P < 0.05 according to the Duncan’s multiple range test
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It was well reported that soil available Cu and 
Zn would be increased with application of mineral 
P fertilizers (e.g. Li et al. 2007), but a case study 
showed that continuous application of inorganic 
NPK fertilizers in cassava production resulted in 
a decrease of available Zn and Cu in soil (Rengel 
2007). However, no significant difference was 
observed in DTPA-Cu and Zn among chemical 
fertilization treatments, and SNPK (Figure 1).

Relationships of DTPA-extractable micronu-
trients with other soil chemical properties. The 
concentration of DTPA-Cu was highly correlated 
with total Cu (Table 1), while DTPA-extractable 
Fe, Mn or Zn were not significantly correlated with 
their total contents. No significant difference was 
observed for total Fe among treatments, while total 
Mn was only significantly greater in N treatment 
than in MNPK treatment. Total Cu contents in treat-
ments were sequenced from high to low as MNPK, 
NPK, NP, SNPK, N, and CK. Total Zn content was 
significantly lower in treatments NP and SNPK than 
in the other treatments (Figure 4).

Soil EC was positively correlated with DTPA-Fe and 
Mn, as opposed to negatively with Cu and Zn. Soil 
pH was only significantly and negatively correlated 
with Fe and Mn. Soil organic C and total N were 
positively correlated with Cu and Zn, but nitrite N 
that correlated negatively with them; neither total P 
nor total K was significantly correlated with any of 
the micronutrients. Ammonia N was the only one to 
correlate with Fe, exchangeable Ca and CEC corre-

lated negatively with Fe and Mn, while exchangeable 
Mg, K and Na positively with Cu and Zn (Table 1).

In conclusion, long-term chemical N application 
significantly increased DTPA-extractable Fe and 
Mn in soils, while the farmyard manure amend-
ment significantly increased DTPA-extractable 
Cu and Zn in soils. DTPA-Fe and Mn increased 
significantly with the decrease of soil pH and 
CEC, while DTPA-Cu and Zn increased signifi-
cantly with increasing SOC and EC. Although 
cornstalk addition significantly increased SOC, 
low contents of total micronutrients in cornstalk 
and the comparatively higher soil pH decreased 
the availability of soil micronutrients. The research 
implicates that farmyard manure amendment is 
for beneficial enhancing of soil Cu and Zn fertil-
ity, while micronutrients should be added to meet 
crop requirements in cornstalk addition practices 
in the black soil farmlands of Northeast China. 
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