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Abstract

Sirousazar M., Mohammadi-Doust A., Achachlouei B.F. (2009): Mathematical investigation of 
the effects of slicing on the osmotic dehydration of sphere and cylinder shaped fruits. Czech J. Food 
Sci., 27: 95–101.

The dehydration kinetics of the fruits with special geometries, i.e. spherical and cylindrical (e.g. apple, peach, banana, 
pineapple, etc.), were studied based on mathematical methods. The influence of the size reduction (slicing) of these 
fruits into smaller rings was also investigated. The mathematical modelling was performed based on the Fick’s second 
law. The results showed that increasing the value of the water diffusion coefficient in fruit (for instance, via increasing 
the process temperature) promotes faster water migration from the fruit. Mathematical modelling also showed that 
the characteristic length of fruits (radius) is in an inverse relation to the dehydration kinetics. Comparing the results 
obtained with both the sphere- and cylinder-shaped fruits revealed that slicing the fruit into more thin rings makes a 
better condition for operating the osmotic dehydration process with a higher efficiency and a shorter duration.
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Osmotic dehydration is a very gentle method to 
reduce water activity in foods (Segu et al. 2006). 
It is a water removal process, which is based on 
immersing foods, such as fruits and vegetables, 
in a hypertonic (osmotic) solution (Ohnishio & 
Miyawaki 2005; Chenlo et al. 2006). The hyper-
tonic solutions are concentrated aqueous solutions 
of soluble solids, e.g. sugar, salt, sorbitol, glycerol, 
etc., having a higher osmotic pressure and a lower 
water activity (Kaymak-Ertekin & Sultanoglu 
2000; Vega-Mercado et al. 2001). This method en-
ables the storage of the product for longer periods, 
preserves flavour and nutritional characteristics, 

and prevents microbial damage (Segu et al. 2006). 
Osmotic dehydration of fruits and vegetables is 
gaining attention due to its important role in the 
food processing industry because this method 
inhibits the enzymatic browning and improves the 
colour, flavour, and texture of the final product; it 
is also a less energy intensive process as no phase 
change takes place (Beristain et al. 1990; Sutar 
& Gupta 2007). The rate of dehydration (water 
loss) during osmotic dehydration depends upon 
factors such as: solution concentration, immersion 
time, solution temperature, size and geometry 
of the food, solution to food mass ratio, and the 
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level of agitation or circulation of the osmotic 
solution. A large number of recent publications 
have described both mathematically and experi-
mentally the influence of these variables on the 
mass transfer rates during osmotic dehydration 
(Beristain et al. 1990; Rastogi & Raghavarao 
2004; Falade et al. 2007; Moreira et al. 2007; 
Sutar & Gupta 2007).

In spite of the numerous mathematical models 
presented to describe the kinetics of the osmotic 
dehydration of foods, it is still difficult to establish 
general rules about the variables that affect this 
process (Spiazzi & Mascheroni 1997). Math-
ematical modelling of the water loss during the 
osmotic dehydration of foods is a difficult issue due 
to the complexity and heterogeneity of the biologi-
cal material; consequently, the models commonly 
make use of a macroscopic approach in which the 
tissue of fruit is assumed to be homogeneous. Fick’s 
second law is usually applied to find an approximate 
solution, and the effective diffusivity of water in the 
tissue is used to account for the variations of the 
physical properties of the tissue as well as for the 
influence of the solution characteristics and process 
variables (Kaymak-Ertekin & Sultanoglu 2000; 
Segu et al. 2006; Garcia et al. 2007).

In the models based on the Fick’s second law, 
the diffusion of water from the inside of the food 
to the surrounding hypertonic solution plays the 
major role in the osmotic dehydration. In this case, 
the concentration gradient of water between the 
inside and outside of the food acts as the driv-
ing force for the mass transfer of water and the 
rate of moisture loss. Some equations have been 
developed by the mathematical modelling of the 
osmotic dehydration process for the fruits having 
simple geometric configurations, i.e. slab, cylinder, 
and sphere (Sutar & Gupta 2007). The osmotic 
dehydration of fruits can be performed by placing 
them, whole or in pieces, in hypertonic solutions 
(Evans et al. 2002). It is clear that the dehydration 
process will be done in a desired manner (with a 
higher rate of water loss) if we reduce the size of the 
fruit by slicing it into smaller pieces (e.g. slicing a 
cylinder-shaped fruit such as banana or pineapple 
to smaller rings). Although this procedure (slicing 
of fruit) is used in numerous practical osmotic 
dehydration experiments (Conway et al. 1983; 
Rastogi & Raghavarao 1995, 1997; Mavroudis 
et al. 1998; Khin et al. 2007), it was not, however, 
investigated from the viewpoint of mathematical 
analysis and theoretical models.

The main aim of this work is to investigate the 
dehydration kinetics of the sphere- and cylinder-
shaped fruits during the osmotic dehydration 
process, based on the mathematical modelling. 
The effect of the size reduction (slicing) of the 
fruits on the osmotic dehydration kinetics was 
also studied using the diffusion model based on 
the Fick’s second law.

Mathematical Modelling 

Let us consider a sphere-shaped fruit (e.g. apple, 
tomato, etc.) having uniform radius of a, and a 
cylinder-shaped one (e.g. banana, pineapple, etc.) 
with a radius of b and a height of h, which we 
want to dehydrate using the osmotic dehydration 
technique. We can perform the process maintain-
ing these fruits initial geometries (sphere and 
cylinder) or reducing their size into more small 
pieces. Parallel slicing the sphere-shaped fruit 
into k pieces creates k rings with nearly identical 
thicknesses (2a/k) and different cross sections, 
while slicing the cylinder-shaped fruit creates 
k rings with exactly equal thicknesses (h/k) and 
identical cross sections (Figure1).

In order to study the dehydration kinetics of the 
sphere- and cylinder-shaped fruits in the osmotic 
dehydration process, we must analyse the Fick’s 
second law in spherical and cylindrical coordi-
nates (Figures 2a, b). Furthermore, the effects of 
the fruit slicing will be obtained by analysing the 
Fick’s second law in Cartesian coordinates, for 
the ring-shaped fruit slices (Figure 2c). The fol-
lowing assumptions were used in the modelling 
of all systems: 

Figure 1. Size reduction (slicing) of the (a) sphere-shaped; 
(b) cylinder-shaped fruits
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–	Water diffusion from fruit into the osmotic so-
lution is the dehydration rate controlling step 
rather than other phenomen, e.g. tissue swelling 
and so on.

–	Water diffusion occurs in one dimension, i.e. 
in the sphere- and cylinder-shaped fruits in the 
direction of r and in the ring-shaped pieces in 
the direction of x (Figure 2).

–	The diffusion coefficient of water in the fruit 
tissue (D) is constant and independent of con-
centration.

–	The concentration of water in the hypertonic 
solution (Ce) is constant during the dehydration 
process.

–	The initial concentration of water in fruit is C0.

Sphere-shaped fruit (spherical coordinates)

In this case, the diffusional release of water from 
a fruit with spherical geometry (Figure 2a) into a 
hypertonic solution is considered. The concentra-
tion of water inside the fruit (0 ≤ r ≤ a) is a func-
tion of both time (t) and position variable (r) and 
is determined by transient diffusion according to 
the Fick’s second law for spherical coordinates, 
as follows:

∂C 
= D ∂    

r2 ∂C	 (1) 
∂t     r2  ∂r      ∂r

where: C – concentration of water in the tissue of fruit

The initial and boundary conditions are:
C(r,0) = C0  	 (2)
C(a,t) = Ce	                        (3)

C(0,t) = finite	                               (4)

Eqs. (2) and (3) were written based on our as-
sumptions and Eq. (4) is right because we know 
that the concentration of water in the center of the 
fruit (r = 0) is not infinite and has a finite value. 

Eq. (1) is a linear partial differential equation (PDE) 
having a non-homogeneous boundary condition 
(Eq. (3)). Eq. (1) can be solved using the method of 
variable separation (product method) (Kreyszig 
1979) by inserting the given initial and boundary 
conditions (Eqs. (2) and (3)).

The final solution of this initial and boundary 
value problem gives function C as follows:

			    (5)

The rate of water diffusion from the fruit (J) is 
expressed based on the Fick’s first law:

 		    	                (6)

where: 
Mt 	–	cumulative amount of water released from the fruit 

at any time t 
S 	 –	surface area of the sphere

S = 4πa2	  	                                         (7)

Inserting Eqs. (5) and (7) in Eq. (6) and integrat-
ing from 0-t gives Mt as follows:

			    (8)

The total initial amount of water or the amount 
removable at infinite time (M∞) is given by:

M∞ = 
4πa3 C0   	                               (9) 

            
3

Finally, the fractional release of water at time t 
in terms of fruit and osmotic solution character-
istics becomes:

 		      	 (10)

Cylinder-shaped fruit (cylindrical 
coordinates)

In this case, the concentration of water inside the 
fruit (0 ≤ r ≤ b) as a function of r and t can be de-
termined by transient diffusion based on the Fick’s 
second law for the cylindrical coordinates:

∂C 
= D 

 ∂2C  
+

 1
 
∂C	  

∂t          ∂r2       r  ∂r	 (11)

The initial and boundary conditions governing 
this system are: 
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Figure 2. The geometries of the a) sphere-shaped; b) cylinder-shaped; c) ring-shaped 
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C(r,0) = C0  	 (12)
C(b,t) = Ce	                        (13)

C(0,t) = finite	                               (14)

Eq. (14) can be explained based on the reason 
of Eq. (4). The above initial and boundary condi-
tion problem (Eqs. (11)–(14)) can be solved on 
the basis of the method of variables separation. 
The final solution of this problem is:

			     (15)

where: 
J 	 – Bessel function of the first kind 
βn 	– constants and roots of the equation given below:

J0 = (βn) = 0     n = 0, 1, 2, 3, …	  (16)

The rate of water diffusion from the fruit (J) and 
the cumulative amount of water released (Mt) are 
given by the Fick’s First law:

  	   		    (17)

where: S – the area of the side of the cylinder: 

S = 4πh	   	     (18)

The combination of Eqs. (15), (17), and (18) 
and integration from Eq. (17) from 0–t gives the 
function Mt as follows:

		     	 (19)

The total initial amount of water (M∞) in this 
cylinder-shaped fruit is expressed as:

M∞ = 4πb2hC0	                            (20)

At last, the fractional release of water at time t 
can be obtained by dividing Eq. (19) by Eq. (20):

    			     (21)

Ring-shaped fruit (Cartesian coordinates)

Consider a sliced ring of either sphere- or cyl-
inder-shaped fruit having a thickness of L (L is 
equal to 2a/k and h/k for the rings obtained from 
the sphere-shaped and cylinder-shaped fruits, 
respectively).

For all rings, we suppose that water diffusion 
occurs only in the direction of x and we neglect the 

radial diffusion, because of the small value of the 
ring thickness to its diameter ratio. Therefore, the 
concentration of water inside the ring (0 ≤ x ≤ l) 
can be found by transient diffusion according to 
the Fick’s second law for Cartesian coordinates 
(slab or flat systems):

∂C 
= D 

 ∂2C  	  
∂t          ∂x2    	   (22)

The initial and boundary conditions for this 
system are:

C(x,0) = C0  	 (23)

C(0,t) = Ce	                        (24)

C(L,t) = finite	                               (25)

Applying the method of variables separation to 
Eq. (22) and using the given initial and boundary 
conditions (Eqs. (23)–(25)), give the concentration 
of water inside the ring-shaped fruit in terms of 
time (t) and position variable (x):

				    

	 		   (26)
Using the Fick’s first law, we can express the rate 

of water diffusion (J) and the cumulative amount of 
water released (Mt) from both sides of the system 
(x=0 and x=L) as follows:

   			    (27)

where: S – surface area of the diffusion section. intro-
ducing Eq. (26) in Eq. (27) and integrating from 0–t, give 
Mt as follows:

			    (28)

The total initial amount of water inside the ring 
(M∞) can be expressed as:

M∞ = SLC0	  (29)

Therefore, the fractional release of water at time 
t from any sliced ring of the fruit (either sphere 
or cylinder-shaped) becomes:

			   (30)
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Results and Discussion

Based on the equations obtained from the past 
section ( Eqs. (10), (21) and (30)), we can describe 
the dehydration kinetics of the sphere- and cylin-
der-shaped fruits during the osmotic dehydration 
process, i.e. the effects of the characteristics of 
the fruit and hypertonic solution (e.g. water dif-
fusion coefficient and the characteristic length of 
the fruit), as well as the effects of the size reduc-
tion (slicing) of the fruit. In all plotted graphs, 
a constant value has been chosen for the initial 
concentration of water in the fruit, as well as the 
concentration of water in the hypertonic solution 
(C0=50 Kmol/m3 and Ce=15 Kmol/m3).

Figure 3 shows the effect of the diffusion coef-
ficient of water in the fruit on the dehydration 
kinetics of a sphere-shaped fruit having the radius 
of 3 mm. It can be seen that the fraction of water 

removed from the fruit (Mt/M∞) strongly depends 
on the diffusion coefficient, in such manner that 
increasing the value of D (which can be achieved 
by increasing the temperature of process) causes 
the fruit to reach the higher equilibrium levels in a 
shorter period. On the other hand, Figure 3 reveals 
that the water migration in more permeable fruits 
(fruit having higher value of D) occurs faster that 
in those with a lower permeability. 

Figure 4 demonstrates the fractional water re-
lease curves versus time for the sphere-shaped 
fruits having the water diffusion coefficient of 
5 × 10–9 m2/s and various radii between 1 mm to 
5 mm. As can be seen, the size (radius) of the fruit 
has an inverse effect on its dehydration kinetics. 
For instance, the fraction of water removed from a 
sphere-shaped fruit having a radius of 1 mm after 
5 h of initiating the osmotic dehydration process 
is 0.7, while this value for the same fruit with a 
radius of 5 mm under identical conditions and 
the same duration is 0.34. Because of this fact, 

Figure 3. The effect of the water diffusion coefficient on 
the dehydration kinetics of the sphere-shaped fruits

Figure 4. The effect of size (radius) on the dehydration 
kinetics of the sphere-shaped fruits

Figure 5. The influence of the slicing on the osmotic de-
hydration kinetics of the sphere-shaped fruits

Figure 6. The effect of the water diffusion coefficient on 
the dehydration kinetics of the cylinder-shaped fruits
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we should reduce the size of fruits to promote 
their dehydration levels and rates in practical 
applications.

Figure 5 was plotted to investigate the effects of 
the sphere-shaped fruits slicing on their osmotic 
dehydration kinetics. In Figure 5, the dehydra-
tion curve of a typical sphere-shaped fruit with a 
radius of 6 mm and water diffusion coefficient of 
5 × 10–9 m2/s was plotted. Furthermore, five in-
dividual dehydration curves were plotted for that 
fruit when it was sliced into 2, 3, 4, 5, and 6 slices 
with identical thicknesses (based on the Eq. (30)). 
Figure 5 shows clearly that the slicing of the fruit 
drastically affects its dehydration kinetics during 
the osmotic dehydration process. Increasing the 
number of slices (k) creates better conditions for 
the dehydration process by increasing the level of 
dehydration during a specified time interval and/or 
decreasing the duration of the process to reach a 
specified dehydration level. Figure 5 shows that 
the fraction of water removed from the complete 
sphere-shaped fruit (a = 6 mm) after 10 h is 0.4, 
while the values in the case that he fruit was sliced 
into 3 or 6 slices are 0.67 and 0.84 h, respectively. 
Figure 5 also shows that slicing the sphere-shaped 
fruit into 2, 3, 4, 5, and 6 slices increase its ability 
of water removing up to 61, 93, 118, 143, and 171 % 
during the early 5  h of the dehydration process.

 In Figure 6, the effect of the water diffusion coef-
ficient on the Mt/M∞ curves against time was shown 
for a cylinder-shaped fruit having the radius of 2 mm. 
Similar to the results obtained for the sphere-shaped 
fruits, the direct dependence of Mt/M∞ on the dif-
fusion coefficient is evident in Figure 6.

The effect of the geometry and characteristic 
length of the cylinder-shaped fruits (i.e. radius of 
cylinder) on their dehydration kinetics was shown 

in Figure 7. A typical fruit having D of 5×10–9 m2/s 
was chosen. Like the sphere-shaped fruits, the cyl-
inder-shaped fruits of a smaller radius dehydrate 
faster and reach the equilibrium level sooner.

The influence of slicing on the water release kinet-
ics of the cylinder-shaped fruits is demonstrated in 
Figure 8, where the Mt/M∞ curve of a typical cyl-
inder-shaped fruit having the radius and height of 
8 mm (b = h = 8 mm) and water diffusion coefficient 
of 5 × 10–9 m2/s was plotted versus time. The same 
curve was also plotted for the cases that the fruit 
mentioned had been sliced into k identical slices. 
Figure 8 proves the fact that the size reduction of 
the cylinder-shaped fruits accelerates their dehydra-
tion rates during the osmotic dehydration process. 
Figure 8 shows that the time required to remove 
40% of the initial stored water from the fruit men-
tioned above in a hypertonic solution having water 
concentration of 15 Kmol/m3 is about 9 h while, by 
slicing the fruit into 3 or 6 slices, the required time 
decreases to 3.6 and 1.9 h, respectively.

Conclusion

The dehydration kinetics of the sphere- and cyl-
inder-shaped fruits in the osmotic solutions was 
mathematically investigated. The effect of the size 
reduction (slicing) on the dehydration kinetics was 
also studied. The mathematical modelling was per-
formed based on the water diffusion from the fruit 
(or its slices) into a hypertonic solution according 
to the Fick’s second law in the spherical, cylindrical, 
and Cartesian coordinates for the sphere-shaped, 
cylinder-shaped, and ring-shaped (parallel sliced) 
fruits, respectively. The results have showen that 
the diffusion coefficient of water and the radius of 

Figure 7. The effect of size (radius) on the dehydration 
kinetics of the cylinder-shaped fruits

Figure 8. The influence of the slicing on the osmotic de-
hydration kinetics of the cylinder-shaped fruits
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the sphere- and cylinder-shaped fruits have direct 
and inverse effects on the dehydration kinetics, 
respectively. Comparing the dehydration curves of 
the complete sphere- and cylinder-shaped fruits 
with those of sliced pieces showed that cutting the 
fruit into more thin rings accelerates dramatically 
the dehydration rate. Based on the result obtained, 
we can predict the dehydration kinetics of the 
sliced sphere- and cylinder-shaped fruits during 
the osmotic dehydration process.
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