Outdoor Environment as a Source of *Listeria monocytogenes* in Food Chain

*Tereza GELBIČOVÁ*¹,³ and *Renáta KARPÍŠKOVÁ*¹,²

¹National Institute of Public Health Prague, Brno, Czech Republic; ²University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; ³Faculty of Science, Masaryk University Brno, Brno, Czech Republic

Abstract

We monitored the presence of *Listeria monocytogenes* in environmental sources and to evaluate the phenotypic and molecular characteristics of the isolates recovered. *L. monocytogenes* was isolated in 12 (11.2%) of the 107 samples from the wild, farm environment, and vegetation. Most isolates (83.3%) were of serotype 1/2a and the remainder (2) were of serotype 4b. All 12 isolates were susceptible to the whole range of antimicrobials tested. These 12 strains were carriers of the virulence genes prfA, hlyA, actA, plcA, plcB, inlA, inlB, inlC, and inlJ. The detection of the inlA gene in 4 (33.3%) of 12 strains using the PCR-RFLP suggests the potential of some of these strains to penetrate into epithelial cells of the intestinal barrier. Macrorestriction analysis also confirmed clonal identity of some environmental isolates with food and human isolates. These results indicate that the external environment is a source of potentially pathogenic strains of *L. monocytogenes*.

Keywords: virulence; listeria; antimicrobial resistance; restriction fragment length polymorphism; pulsed-field gel electrophoresis (PFGE)

Listeria monocytogenes is a ubiquitous saprophytic bacterium, adapted to life in soil and decaying vegetation, but also in the cytosol of eukaryotic host cells (Freitag et al. 2009). *L. monocytogenes* can also be isolated from the surface and underground waters, improperly fermented silage, sewage sludge, slaughter wastes, animal and human faeces, foodstuffs, and food industry plants (Farber & Peterkin 1991; Ivanek et al. 2006). In both animals and susceptible humans, *L. monocytogenes* causes serious invasive disease. The main source of listeria to animals is contaminated feed, and that to humans is food for direct consumption (Vázquez-Boland et al. 2001).

The presence of *L. monocytogenes* in farm animals is mainly associated with cattle and sheep farming, and less often with pig and poultry farming. In ruminants, the disease manifests itself primarily by neurological symptoms or abortion, and very uncommonly, by mastitis. However, as a rule, *L. monocytogenes* passes asymptptomatically through the gastrointestinal tract to be excreted in faeces (Ivanek et al. 2006; Esteban et al. 2009). Fecal contamination of soil, vegetation, and surface water is the major source of *L. monocytogenes* in primary food production (Ivanek et al. 2006). Pathogenicity of *L. monocytogenes* is due to its capacity of penetrating into and proliferating in

Supported by the Ministry of Education, Youth and Sports of the Czech Republic, Projects No. MSM 6215712402 and No. 2B08050, and of the EU Integrated Project BIOTRACER, Contract No. 036272, in the 6th RTD Framework.
various types of host cells, including non-phagocytic cells. The intracellular cycle of *L. monocytogenes* starts with the invasion of host cells mediated by the surface proteins internalins A (encoded by *inlA* gene) and B (*inlB*) (Bierné et al. 2007). An essential prerequisite for *L. monocytogenes* proliferation and replication in the cytosol is the bacterial escape from phagolysosomes, mediated by listeriolysin O (*hlyA*) in combination with phospholipases, phosphatidylinositol (*plcA*), and phosphatidylcholine (*plcB*) phospholipases C. The intracellular motility of *L. monocytogenes* and spread from cell to cell are due to an actin polymerisation protein (*actA*). The PrfA (positive regulatory factor A) protein is crucial to the transcriptional regulation of the above-mentioned genes located in LIPI-1 (*Listeria* pathogenicity island 1) and in part also of *inlA* and *inlB* genes (Gray et al. 2006; Freitag et al. 2009).

Variation in the pathogenic potential of *L. monocytogenes* isolated from foodstuffs and the environment has been reported. This may be due to the deletion of one or more genes encoding the key virulence factors (Doumith et al. 2004a). However, a number of studies have found such genes to be stable parts of the genome of *L. monocytogenes* (Jaradat et al. 2002; Doumith et al. 2004a). The reduced virulence of *L. monocytogenes* may also be a result of point mutations of the above-mentioned genes. Sequencing analysis of the *inlA* gene has identified point mutations leading to the production of a truncated InlA. *L. monocytogenes* strains producing a truncated form of InlA protein have a reduced capacity of invading tissue culture epithelial cells. For a rapid screening of these potentially non-invasive *L. monocytogenes* strains, PCR-RFLP (restriction fragment length polymorphism) can be used to identify the *inlA* gene polymorphism (Rousseaux et al. 2004).

MATERIAL AND METHODS

From February to July 2010, 107 environmental samples collected in the Czech Republic, particularly in Brno and its surroundings, were analysed (Table 1). The samples were obtained from the outdoor environment (soil, mud, surface water, silt, compost, sand), urban environment (soil, sandpits), animal farm environment (soil, bedding, feed, sand, faeces), vegetation (aquatic algae, leaves, grass, moss), and wild animals (wireworm, earthworms, leeches, grubs, dead fish).

<table>
<thead>
<tr>
<th>Origin of samples</th>
<th>Number of analysed samples</th>
<th>Number (%) of positive samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>city</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>farm</td>
<td>20</td>
</tr>
<tr>
<td>Vegetation</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>Animal</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>107</td>
<td>12 (11.2)</td>
</tr>
</tbody>
</table>

Table 1. Origin and number of analysed and positive samples for *L. monocytogenes*

Detection of *L. monocytogenes*. The samples were analysed in compliance with EN/ISO 11290–1:2004, using a modified protocol with the following culture media: Buffered Peptone Water (BPW), Fraser broth, and ALOA (Bio-Rad, Paris, France). The modifications made to the protocol were as follows: (a) homogenisation of 5 g to 25 g of the test sample in BPW (at a ratio of 1 to 9), incubation at 37°C for 24 h, (b) subsequent inoculation of 1 ml of culture into 10 ml of Fraser broth, incubation at 37°C for 24 h, and (c) plating on ALOA (incubation at 37°C for 24 h). When water was analysed, 1 ml of sample was inoculated into 9 ml of BPW and cultured at 37°C for 24 hours. Other steps were identical to those specified in the standard protocol.

Serotyping. Serotyping was performed by the slide agglutination method using commercially available antisera (Denka Seiken, Tokyo, Japan) and subsequently confirmed by multiplex PCR (Doumith et al. 2004b) using PPP polymerase (Top-Bio, Prague, Czech Republic) and primers synthesised by Generi Biotech (Hradec Králové, Czech Republic).

Resistance to antimicrobials. Phenotypic resistance testing was performed by the disk diffusion method on Mueller-Hinton agar (Bio-Rad, Paris, France). The antimicrobials tested and interpretation criteria used are shown in Table 2.

Detection of virulence genes. Four PCR assays were performed to detect the following virulence genes: (1) *prfA* (D’Agostino et al. 2004) and *plcA* (Jaradat et al. 2002), (2) *hlyA* (Aurora et al. 2008) and *actA* (Jaradat et al. 2002), (3) *plcB* (Jaradat et al. 2002), and (4) *inlA*, *inlC*, *inlF* (Liu et al. 2007) and *inlB* (Jaradat et al. 2002). All assays used primers synthesised by Generi Biotech (Hradec Králové, Czech Republic), PPP polymerase (Top-Bio, Prague, Czech Republic) or a Qiagen Multiplex PCR Kit (Bio-Consult, Prague, Czech Republic).
PCR-RFLP analysis of inlA polymorphism.

Potentially non-invasive _L. monocytogenes_ strains were screened by PCR-RFLP based on _inlA_ polymorphism (Rousseaux et al. 2004). The 733 bp _inlA_ fragment was amplified using primers seq01 and seq02 (Rousseaux et al. 2004) (Generi Biotech, Hradec Králové, Czech Republic). The amplified product was cleaved with restriction endonuclease _AluI_ (BioLabs, Hitchin, UK) and PCR-RFLP fragments were separated by electrophoresis on 3.5% gel (SERVA Electrophoresis GmbH, Heidelberg, Germany).

Pulsed-field gel electrophoresis (PFGE). Macrorestriction analysis using endonuclease _Ascl_ (BioLabs, Hitchin, UK) and PCR-RFLP fragments were separated by electrophoresis on 3.5% gel (SERVA Electrophoresis GmbH, Heidelberg, Germany).

RESULTS AND DISCUSSION

L. monocytogenes was detected in 12 (11.2%) of 107 environmental samples analysed in this study. All positive samples were collected in areas characterised by high humidity or the presence of either farm or wild warm-blooded animals (Table 3), which is in line with the reports from other countries (Welshimer & Donket-Voet 1971; Weis & Seeliger 1975; Colburn et al. 1990; Lyautey et al. 2007). The highest proportion of _L. monocytogenes_ isolates (66.7%) was found in the mud samples from the vicinity of water courses and in the soil samples from the areas where animals live.

Most _L. monocytogenes_ isolates (10/12) were of serotype 1/2a. Only two isolates from different sites of the same area were classified into serotype 4b. Both strains of this serotype were of the same clonal type (pulsotype 204). Thus, it appears that 1/2a is the most widespread serotype in the Czech Republic, found not only in foodstuffs and humans (Karpíšková & Gelbíčová 2008) but also in the outdoor environment.

None of the 12 isolates recovered showed resistance to antimicrobials (ampicillin, penicillin, gentamicin, and trimetoprim) used in the treatment of human listeriosis. The environmental isolates were also susceptible to other antimicrobials tested. Although _L. monocytogenes_ is commonly susceptible to a wide range of antimicrobials, some authors have reported tetracycline resistance in environmental strains of _L. monocytogenes_ (MacGowan et al. 1994) or multidrug resistance to ampicillin, erythromycin, tetracycline, dicloxacillin, and co-trimoxazole (Rodas-Suárez et al. 2006). The monitoring of _L. monocytogenes_ resistance to antimicrobials is currently needed as well as the development of international criteria for the evaluation of resistant strains.

All genes involved in the pathogenicity of _L. monocytogenes_ (prfA, _hlyA_, _plcA_, _plcB_, _actA_, _inlA_, and _inlB_) were detected in the environmental isolates. However, some studies have also reported avirulent strains of _L. monocytogenes_ recovered from foodstuffs (Chen et al. 2009a; Kaur et al. 2010) or from faeces of captive wild animals (Kalorey et al. 2006) that typically lack some of these virulence genes. Whether the strains lacking _prfA_ or _hlyA_ (Kalorey et al. 2006; Kaur et al. 2010) that are commonly used for the detection of _L. monocytogenes_ were correctly identified to the species level by phenotypic methods remains a question. Based on the results of this study and other studies (Chen et al. 2009a; Mammina et al. 2009), the _inlC_ and _inlJ_ genes are also stable.
parts of the genome of *L. monocytogenes*, but their roles in the virulence remain unclear (Bierne et al. 2007). Nevertheless, other authors (Chen et al. 2009a,b) have reported the absence of the *inlC* and *inlJ* genes in *L. monocytogenes* strains of serotype 4a exhibiting a lower virulence. This is explained by a higher genetic relatedness between serotype 4a and the non-pathogenic species *L. innocua* that is not a producer of InlC and InlJ proteins either (Chen et al. 2009b).

An important role in the pathogenicity of *L. monocytogenes* is played by internalin A that mediates the interaction with E-cadherin of epithelial cells, thus enabling the passage through the intestinal barrier (Bierne et al. 2007). By the PCR-RFLP method for the detection of the *inlA* gene polymorphism, the strains tested were classified into four of the five profiles described previously (Rousseaux et al. 2004). Most strains tested were of profile 1 (6/12). The strains of profiles 1 and 4 have been found to produce the truncated form InlA and to have a lower capability of invading tissue culture epithelial cells (Caco-2) (Rousseaux et al. 2004; Lyautey et al. 2007). However, in our study, these profiles were also detected in the strains that are clonally identical to those recovered from human listeriosis cases, i.e. in a strain of pulsotype 713 and PCR-RFLP profile 4, and in strains of pulsotypes 716 and 735 and of PCR-RFLP profile 1. Therefore, it can be stated that some strains of profiles 1 and 4 may also be producers of the functional form of InlA (Rousseaux et al. 2004). Nevertheless, from our results, it cannot be concluded unambiguously whether these strains actually produce an 80 kDa InlA or whether other factors also play a role in their invasiveness. On the other hand, 4 (33.3%) of the 12 strains classified into profiles 2 and 3 are potentially invasive strains in which functional internalin A was reported by others (Rousseaux et al. 2004).

Macrorestriction analysis revealed 11 different pulsotypes among the isolates recovered. Some of them were detected for the first time (774, 777), while others have already been found not only in food chain isolates but also in human isolates (as documented by the database of the National Institute of Public Health, National Reference Laboratory for Listeria, Prague, Czech Republic). *L. monocytogenes* clones of serotype 1/2a and of pulsotypes 713, 716, and 738 as well as the clone of serotype 4b and pulsotype 204 were recovered from sporadic human listeriosis cases from 2007 through 2010. The *L. monocytogenes* strain of serotype 1/2a and pulsotype 735 detected in waste from a drain in the farm with livestock (sewer of livestock farm) belongs to the same clone as that implicated in the listeriosis outbreak related to vacuum packed ham in the South Bohemian Region at the turn of

<table>
<thead>
<tr>
<th>Origin of strains</th>
<th>Serotype</th>
<th>Pulsotype</th>
<th>LIPI-1*</th>
<th>Internalins*</th>
<th>PCR-RFLP profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mud from the bank</td>
<td>1/2a</td>
<td>769</td>
<td>+</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>Mud from the stream</td>
<td>1/2a</td>
<td>701</td>
<td>+</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>Mud from the stream in the place where animals goes to drink</td>
<td>1/2a</td>
<td>709</td>
<td>+</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>Mud from the wood small lake</td>
<td>4b</td>
<td>204</td>
<td>+</td>
<td>+</td>
<td>4</td>
</tr>
<tr>
<td>Soil from the game-preserve of boars</td>
<td>1/2a</td>
<td>777</td>
<td>+</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>Soil by the rack in the wood</td>
<td>4b</td>
<td>204</td>
<td>+</td>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td>Decaying foliage from the bank</td>
<td>1/2a</td>
<td>713</td>
<td>+</td>
<td>+</td>
<td>4</td>
</tr>
<tr>
<td>Algae from the water reservoir</td>
<td>1/2a</td>
<td>762</td>
<td>+</td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td>Decaying foliage from the bank</td>
<td>1/2a</td>
<td>716</td>
<td>+</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>Soil in the farm with horses</td>
<td>1/2a</td>
<td>738</td>
<td>+</td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td>Soil in the farm with swines</td>
<td>1/2a</td>
<td>774</td>
<td>+</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>Waste from the drain in the farm with livestock</td>
<td>1/2a</td>
<td>735</td>
<td>+</td>
<td>+</td>
<td>1</td>
</tr>
</tbody>
</table>

*+ or – indicate the presence or the absence of mentioned *L. monocytogenes*
2008/2009 (Karpíšková & Gelbíčová 2009). Interestingly, the strain of serotype 1/2a and pulsotype 713 is classified into the persistent clone which has long been detected in a Czech plant making soft-ripened cheeses (Gelbíčová et al. 2008). These results are in accordance with those reported in other countries (Fuggett et al. 2007), showing that some L. monocytogenes clones are associated with specific sources, while others are widespread and can be found among the isolates from the farm environment, foodstuffs, environmental sources, or humans. Therefore, to facilitate epidemiological investigations and identification of L. monocytogenes sources, it is necessary to maintain an extensive database with phenotypic and genotypic characteristics of strains of different origin.

CONCLUSION

The bacterium L. monocytogenes can be isolated from the external environment, in particular from wet areas or from those where animals are present. The predominance of serotype 1/2a and susceptibility of the isolates to antimicrobials are in line with the available data on food and human isolates from all over the Czech Republic. The results obtained have confirmed that the environment is a source of potentially pathogenic L. monocytogenes strains that carry a basic set of virulence genes and have the potential for invading the host epithelial cells.

References

Received for publication January 7, 2011 Accepted after corrections March 7, 2011

Corresponding author:
Mgr. Tereza Gelbíčová, Ph.D., Masarykova univerzita, Přírodovědecká fakulta, Ústav experimentální biologie, Tvrđeňho 14, 602 00 Brno, Česká republika
tel. + 420 549 466 254, e-mail: gelbicova.t@seznam.cz