Novel Strecker Degradation Products of Tyrosine and Dihydroxyphenylalanine

JAN ADAMIEC, KAREL CEJPEK, JAN RÖSSNER and JAN VELÍŠEK

Institute of Chemical Technology – Department of Food Chemistry and Analysis, Prague, Czech Republic

Abstract

Tyrosine was oxidised with either potassium peroxodisulphate or glyoxal. Volatile reaction products were isolated and analysed by GC/FID and GC/MS, derivatised with diazomethane and analysed by the same methods. Eight reaction products were identified. The major products were the expected Strecker aldehyde (4-hydroxyphenylacetaldehyde) and its lower homologue 3,4-dihydroxybenzaldehyde, 3,4-dihydroxybenzoic, 3,4-dihydroxyphenylacetic, and caffeic acid. An identification of these oxidation products of tyrosine and 3,4-dihydroxyphenylalanine was based on their characteristic GC and GC/MS spectra. The minor products, six α-amino acids, were characterized by their GC and GC/MS spectra, derivatised with diazomethane and analysed by the same methods. Eight reaction products were identified. The major products were the expected Strecker aldehyde (4-hydroxyphenylacetaldehyde) and its lower homologue 3,4-dihydroxybenzaldehyde, 3,4-dihydroxybenzoic, 3,4-dihydroxyphenylacetic, and caffeic acid. An identification of these oxidation products of tyrosine and 3,4-dihydroxyphenylalanine assumed homolytic cleavage of the Strecker aldehyde and a recombination of free radicals formed by this cleavage. As minor products, six O- and N-heterocyclic compounds arose in systems containing glyoxal (pyrazine, methyl- and ethylpyrazine, 3-furancarbaldehyde, 5-methyl-2-furancarbaldehyde, 2-pyrrolicarbaldehyde).

Key words: Strecker degradation; amino acids; glyoxal; sodium peroxodisulphate; radicals; tyrosine; 3,4-dihydroxyphenylalanine (DOPA); 4-hydroxyphenylacetaldehyde, 3,4-dihydroxyphenylacetaldehyde

The oxidative decarboxylation of α-amino acids to aldehydes with one less carbon atom is called Strecker degradation (SCHÖNBERG et al. 1948; SCHÖNBERG & MOUBACHER 1952). The reaction involves several steps and its mechanism depends on the nature of the degrading agent. The agents that bring about the Strecker degradation of amino acids are inorganic or organic. It is generally accepted that the oxidative decarboxylations of amino acids proceed as schematically indicated in Fig. 1. The reaction is a complicated process involving many steps, among others the formation of the corresponding imino acid (hypochlorite oxidation leads to the intermediate, N-chloroamino acid – OGATA et al. 1981). The fate of the amino group in this reaction depends on the structure of the oxidising agent. It may be eliminated in the form of ammonia. This is the case when the amino acid is degraded by peroxodisulphates, hypochlorites, other inorganic agents and some organic reagents. The amino group may also become linked to the oxidising agent converting it into an amino derivative of a similar structure. Such reactions proceed when the oxidation reagents are sugars and α-dicarbonyl compounds such as glyoxal (Fig. 2).

The Strecker degradation of amino acids is important for the generation of flavour-active compounds in many

\[
\begin{align*}
R-\text{CH} \text{--COOH} & \xrightarrow{1/2 \text{O}_2} R-\text{CH} \equiv \text{O} + \text{CO}_2 + \text{NH}_3 \\
\text{NH}_2 & \quad \text{(oxidising agent)} \quad \text{aldehyde} \quad \text{carbon dioxide} \quad \text{ammonia}
\end{align*}
\]

Fig. 1. Simplified mechanism of α-amino acid degradation

This work was partly supported by the research project CEZ: J19/98:223300004 granted by the Ministry of Education, Youth and Sports of the Czech Republic.
foods as it provides volatile aldehydes and subsequently alcohols, acetals, acids, esters and other compounds. The importance of Strecker degradation for biological processes such as its role in aging process and age-related diseases has been established for a long time (DEGENHARDT et al. 1998).

Tyrosine (Tyr) accompanies phenylalanine in the majority of proteins and its average content is about 3.5%. Enzymatic oxidation of Tyr in some food products such as beans and mushrooms, in the so-called nonenzymatic browning reactions, leads to brown discolouration of these materials. Tyr is also readily oxidized to 3,4-dihydroxyphenylalanine (DOPA), which is a precursor of the so called melanins in animals.

The Strecker degradation of Tyr by hypochlorite yields 4-hydroxyphenylacetaldehyde (LANGELD 1909). In bamboo sprouts and sorghum grains, the same aldehyde arises from cyanogenic glycosides taxiphillin and dhurin (VELÍŠEK 1999). The corresponding alcohol tyrosol (4-hydroxyphenylethanol) is a common constituent of alcoholic beverages (NYKANEN & SUOMALAINEN 1983). The Strecker aldehyde of DOPA, 3,4-dihydroxyphenylacetaldehyde, has been identified as a product of enzymatic reactions, leads to brown discoloration of these materials. Tyr is also readily oxidized to 3,4-dihydroxyphenylalanine (DOPA), which is a precursor of the so-called melanins in animals.

The Strecker degradation of Tyr by hypochlorite yields 4-hydroxyphenylacetaldehyde (LANGELD 1909). In bamboo sprouts and sorghum grains, the same aldehyde arises from cyanogenic glycosides taxiphillin and dhurin (VELÍŠEK 1999). The corresponding alcohol tyrosol (4-hydroxyphenylethanol) is a common constituent of alcoholic beverages (NYKANEN & SUOMALAINEN 1983). The Strecker aldehyde of DOPA, 3,4-dihydroxyphenylacetaldehyde, has been identified as a product of enzymatic reactions, leads to brown discoloration of these materials. Tyr is also readily oxidized to 3,4-dihydroxyphenylalanine (DOPA), which is a precursor of the so-called melanins in animals.

Fig. 2. Degradation of α-amino acids by α-dicarbonyl compounds

MATERIAL AND METHODS

Chemicals: Tyr, DOPA (Aldrich, Steinheim, Germany), and glyoxalhydrate trimer (Sigma Chemical Company, St. Louis, USA) were commercial products. Potassium peroxodisulphate (K₂S₂O₈) and other compounds were obtained from Lachema (Brno, Czech Republic). Diazomethane solution in diethyl ether was prepared from p-toluenesulphonyl-N-methylimidazol (Aldrich, Steinhein, Germany). Solvent grade diethyl ether was purchased from Merck (Darmstadt, Germany).

Oxidative Decarboxylation of Amino Acids: Amino acid (5 mmol) and potassium peroxodisulphate or glyoxal (5 mmol) were dissolved in 500 ml water and the mixture was heated under reflux for 1 h. The reaction mixture was cooled to room temperature and extracted with two 50 ml and two 25 ml portions of diethyl ether. The combined extracts were dried over anhydrous sodium sulphate, concentrated to 500 µl using a Snyder column and analysed by GC/FID and GC/MS method. An aliquot (usually 100 µl) of the concentrated extract was derivatised with diazomethane solution in diethyl ether, concentrated to 100 µl and analysed as described above.

Gas Chromatographic (GC/FID) and Gas Chromatographic/Mass Spectrometric (GC/MS) Analysis: A Hewlett-Packard (H/P) Model 4890A gas chromatograph equipped with a flame ionization detector and a fused capillary column (HP-Innowax, 30 m × 0.25 mm i.d., film thickness: 0.25 µm) was used in this study. The GC oven was temperature programmed from 60 to 220°C at a rate of 5°C/min, the injector and detector temperatures were held at 220 and 250°C, respectively. The carrier gas (N₂) flow rate was 2 ml/min. The sample (1 µl) was injected using a split ratio of 1:10. Duplicate analyses of samples were done.

GC retention indices (relative retention index, R.I.) were determined internally with a series of n-alkanes (VAN DEN DOOL & KRATZ 1963). The GC conditions were the same as described above.

For GC/MS analysis, a H/P Model G1800A apparatus equipped with the same column operating under conditions described above were used. Carrier gas (He) flow rate was 0.7 ml/min. Mass spectra were obtained by EI ionization at 70 eV. The ion source temperature was maintained at 250°C. NIST/EPA/NIK 75k Mass Spectral Database (Hewlett-Packard) enabled tentative identification of analysed compounds.
RESULTS AND DISCUSSION

The oxidative decarboxylation of amino acids in this study was induced either by a free radical initiator potassium peroxodisulphate or by glyoxal (ADAMIEC et al. 2001). In the absence of these oxidation reagents, the spontaneous decomposition of amino acids was negligible.

Tyrosine: Under the reaction conditions employed the amount of Tyr decomposed by peroxodisulphate and glyoxal was 67 and 68%, respectively (Table 1).

<table>
<thead>
<tr>
<th>System</th>
<th>Final concentration [mmol/l]</th>
<th>Decomposed amount [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyr/K2S2O8</td>
<td>3.4 3.2 3.3 0.14</td>
<td>67</td>
</tr>
<tr>
<td>Tyr/glyoxal</td>
<td>3.3 3.0 3.2 0.21</td>
<td>68</td>
</tr>
<tr>
<td>DOPA/K2S2O8</td>
<td>5.2 5.1 5.2 0.07</td>
<td>48</td>
</tr>
<tr>
<td>DOPA/glyoxal</td>
<td>5.7 5.6 5.7 0.07</td>
<td>43</td>
</tr>
</tbody>
</table>

*The starting concentration was 10.0 mmol/l

As it is shown in Fig. 3, two major volatile compounds (4-hydroxyphenylacetaldehyde and its lower homologue 4-hydroxybenzaldehyde) were detected in the diethyl ether extract of Tyr solution oxidised by peroxodisulphate. Three additional compounds, i.e. benzaldehyde, phenylacetaldehyde, and phenol, were found in much lower quantities. The major compounds were tentatively identified comparing their mass spectra with mass spectral data contained by the mass spectral data base (Table 2). Other components were identified by comparison of their mass spectral data and retention time data with those of authentic compounds. The Strecker aldehyde, 4-hydroxyphenylacetaldehyde, arose from 0.57 mg of Tyr decomposed (0.063% of the starting amount), which corresponds to 0.13% of theory (Table 3).

Table 2. Volatile products formed from Tyr oxidised by potassium peroxodisulphate or glyoxal

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Compound</th>
<th>Identification</th>
<th>RT (min)</th>
<th>R.I.</th>
<th>mg per starting amt of amino acid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4-hydroxyphenylacetaldehyde 107(100),77(23),136M(17),108(9)</td>
<td>MS</td>
<td>39.7</td>
<td>2820</td>
<td>0.427</td>
</tr>
<tr>
<td></td>
<td>4-hydroxybenzaldehyde 121(100),122M(89),93(43),65(34)</td>
<td>MS</td>
<td>44.8</td>
<td>2958</td>
<td>0.233</td>
</tr>
</tbody>
</table>

*Mass spectra (MS) are listed in parentheses with descending intensities of fragment ions, M = molecular peak

Derivatisation with diazomethane and separation of the products arisen in the Tyr/K2S2O8 system revealed the presence of a higher number of compounds. N,N-methylated and N-methylated methyl esters of Tyr were identified as the major volatile products (LIEBICH & FORST 1985). Due to its nucleophilic nature, diazomethane reacted with carboxylic groups of acids, hydroxyl groups of phenols, amino groups of amino acids and even with carbonyl groups of aldehydes (ČERNÝ et al. 1971). The latter reaction predominantly yielded the corresponding methylketones (Fig. 4). The major product was 1-(4-methoxyphenyl)-2-propanon, formed from the Strecker aldehyde. The methoxyderivative of the Strecker aldehyde (4-methoxyphenylacetaldehyde) was found in a lower amount. The same compound could also arise from 4-hydroxybenzaldehyde. The same precursor probably gave rise to 4-methoxyacetophenon and 4-methoxybenzaldehyde (anisaldehyde). The other identified compounds were
benzylmethylketon which arose from benzaldehyde, 1-(4-methoxyphenyl)-3-butanone having its origin in 1-(4-hydroxyphenyl)-3-propionaldehyde derivatisation, methyl 4-methoxybenzoate, and methyl benzoate. Mass spectra of the identified methylketones are listed in Table 4. The occurrence of these and other minor compounds suggests a homolytic cleavage of 4-hydroxyphenylacetaldelyde or other compounds and a recombination of the resulting free radicals.

The amino acid solution oxidised by glyoxal contained the same two major aldehydes, i.e. 4-hydroxyphenylacetaldehyde and 4-hydroxybenzaldehyde. The Strecker aldehyde was formed from 0.30 mg of Tyr (0.033% of the starting amount) which corresponds to 0.07% of theory (Table 3). Some additional minor compounds that resulted from the reaction of the amino acid with glyoxal (pyrazine, methyl- and ethylpyrazine, 3-furancarbaldehyde, 5-methyl-2-furancarbaldehyde, 2-pyrolcarbaldehyde) were identified.

Glyoxal itself (present in diluted aqueous solutions as a dihydrate) yielded a small amount of glyoxylic acid by oxidation. The reaction can be initiated, for instance, by hydroxyl radicals (BUXTON et al. 1997) and proceeds via a peroxyl radical that splits off HO2• (Fig. 5).

Dihydroxyphenylalanine: The amount of DOPA decomposed by a reaction with peroxodisulphate and glyoxal was lower than the quantity of Tyr, being 48 and 47%, respectively (Table 1). The yield of the Strecker aldehyde was about ten times lower than of that arising from Tyr (Table 3).

The polar products obtained were either not extractable into diethyl ether or not sufficiently volatile to be amena-

![Fig. 4. Proposed reaction pathway leading to the formation of methylketones from aldehydes and dizomethane](image)

![Fig. 5. Autoxidation of glyoxal to glyoxylic acid](image)

Table 3. Amount of Strecker aldehyde formed from amino acid oxidised by potassium peroxodisulphate or glyoxal

<table>
<thead>
<tr>
<th>Amino acid</th>
<th>Strecker aldehyde yield (% of theory) a</th>
<th>K2S2O8</th>
<th>Glyoxal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyr</td>
<td>0.13</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>DOPA</td>
<td>0.01</td>
<td>0.005</td>
<td></td>
</tr>
</tbody>
</table>

a Mean values (2 parallel determinations, average relative standard deviation 7.3%)
ble to gas chromatographic separation. Therefore, an aliquot of the aqueous phase was evaporated to dryness and directly derivatised with diazomethane. Analogously to Tyr, the corresponding methoxyphenols, methylketons and carboxylic acids methyl esters were identified. Except the methyl ester of \(N,N\)-dimethylated DOPA, mass spectrum: 116(100), 208M-59(12), methyl 3,4-dimethoxyphenylglycinic acid (derived from caffeic acid) was identified as the major product. The minor products found were 3,4-di-methoxybenzaldehyde, 3,4-dimethoxybenzoic acid, 1-(3,4-dimethoxyphenyl)-2-propanon arising from the Strecker aldehyde, and methyl 3,4-dimethoxyphenylacetate derived from 3,4-dihydroxyphenylacetic acid. Mass spectra of the identified carbonyl compounds are summarized in Table 4.

CONCLUSIONS

Oxidation of Tyr with either peroxodisulphate or glyoxal yielded the expected Strecker aldehyde (4-hydroxy-phenylacetaldheyde), its lower homologue 4-hydroxy-benzaldehyde, its homologue 1-(4-hydroxyphenyl)-3-propionaldehyde, 4-hydroxybenzoic acid and several minor products. Analogously, the oxidation of DOPA predominantly yielded the expected Strecker aldehyde (3,4-di-hydroxyphenylacetaldheyde), its lower homologue 3,4-dihydroxybenzaldehyde, 3,4-dihydroxybenzoic, 3,4-dihydroxyphenylacetic, and caffeic acid. The identification of these oxidation products of Tyr and DOPA assumes homolytic cleavage of the Strecker aldehydes and a recombination of free radicals produced.

Abbreviations

<table>
<thead>
<tr>
<th>Component</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyr</td>
<td>L-tyrosine, L-2-amino-3-(4-hydroxyphenyl)propionic acid</td>
<td></td>
</tr>
<tr>
<td>DOPA</td>
<td>L-3-(3,4-dihydroxyphenyl)alanine, L-2-amino-3-(3,4-dihydroxyphenyl)propionic acid</td>
<td></td>
</tr>
</tbody>
</table>

References

Received for publication March 29, 2000
Accepted for publication April 30, 2000

Souhrn

Tyrosin byl oxidován peroxodisulfitem drásným nebo glyoxalem. Těkavé produkty reakce byly izolovány a analyzovány metodou GC/FID a GC/MS, derivatizovány diazomethanem a znovu analyzovány stejnými metodami. Bylo identifikováno osem

SOUHRN
reakčních produktů. Hlavními produkty reakce byly očekávaný Streckerův aldehyd (4-hydroxyfenylacetaldehyde) a jeho nižší homolog 4-hydroxybenzaldehyd, dále podle obsahu následovaly 4-hydroxypropionaldehyd, fenylacetaldehyd, benzaldehyd, fenol, kyselina 4-hydroxybensoová a benzoová. Analogicky oxidace 3,4-dihydroxyfenylalaninu poskytovala příslušný Streckerův aldehyd, tzn. 3,4-dihydroxyfenzylacetaldehyd a jeho nižší homolog 3,4-dihydroxybenzaldehyd, dále kyseliny 3,4-dihydroxybenzoovou, 3,4-dihydroxyfenyloctovou a kávovou. Identifikace těchto oxidačních produktů tyrosinu a 3,4-dihydroxyphenylalaninu předpokládá homolytické štěpení molekuly Streckerových aldehydů a rekombinací vzniklých volných radikálů. V systémech obsahujících glyxal bylo prokázáno šest minoritních produktů – O- a N-heterocycllických sloučenin (pyrazin, methyl- a ethylpyrazin, 3-furankarbaldehyd, 5-methyl-2-furankarbaldehyd, 2-pyrrolikarbaldehyd).

Klíčová slova: Streckerova degradace; aminokyseliny; glyoxal; peroxidisulfát sodný; radikály; tyrosin; 3,4-dihydroxyfenylalanin (DOPA); 4-hydroxyfenylacetaldehyd, 3,4-dihydroxyfenylacetaldehyde

Corresponding author:
Prof. Ing. JAN VELIŠEK, DrSc., Vysoká škola chemicko-technologická, Ústav chemie a analýzy potravin, Technická 5, 166 28 Praha 6, Česká republika, tel.: + 420 2 311 52 17, fax: + 420 2 311 99 90, e-mail: Jan.Velisek@vscht.cz