Control of Mould Growth by *Lactobacillus rhamnosus* VT1 and *Lactobacillus reuteri* CCM 3625 on Milk Agar Plates

MILADA PLOCKOVÁ, JITKA STILES, JANA CHUMCHALOVÁ AND RADKA HALFAROVÁ

Institute of Chemical Technology – Department of Dairy and Fat Technology, Prague, Czech Republic

Abstract

The possibility to control mould growth by *Lactobacillus rhamnosus* VT1 and *Lactobacillus reuteri* CCM 3625 in a milk environment was assessed using the milk agar plate method. Higher antifungal activity was exhibited by actively growing cells of both lactobacilli strains compared with the MRS broth supernatants of both bacterial strains containing metabolites with antifungal activity. The control of mould growth by *Lactobacillus reuteri* CCM 3625 was proved to be associated with the production of the mixture of lactic (0.9% w/w), acetic (0.2% w/w), and succinic (0.2% w/w) acids. The mechanism of mould growth control by *Lactobacillus rhamnosus* VT1 probably consists in the production of lactic acid (1.2% w/w) together with some other metabolite(s) of non-proteinaceous and non-saccharidic nature with antifungal activity.

Keywords: *Lactobacillus*; milk agar plate; mould growth control; antifungal metabolite

The fungal contamination of dairy products such as cheese and fermented milks is a serious problem (VEDAMUTHU 1991; LUND et al. 1995). The most common undesirable mould genera originating from air, water, raw materials, packaging material, surfaces of the manufacturing equipment and staff (PITT & HOCKING 1985) are *Penicillium, Fusarium, Macor, Rhizopus, Aspergillus, Cladosporium, Alternaria* and *Geotrichum* sp. (ROY et al. 1996).

Contamination by moulds during dairy production and distribution is directly connected to technological problems, economic losses, and health aspects. It is mainly caused by the decomposition of products, deterioration of organoleptic properties and health risks due to the potential production of mycotoxins or allergenic conidia, ascospores, and mycelia fragments (FILTENBORG 1996).

The fungal growth in the dairy industry was previously controlled mainly by the prevention of mould contamination. This consisted in the use of good manufacturing practices, regulation of inner and outer parameters during the production and storage of dairy products, and in the application of antimycotics (DAESCHEL 1989; DE BOER 1981). Another promising possibility would be the use of combination of these measures with lactic acid bacteria possessing antagonistic activity toward fungi.

A limited number of reports have shown that lactic acid bacteria affect mould growth and mycotoxin production by different mechanisms including production of organic acids (OUWEHAND 1998; BATISH et al. 1989) or other heat stable compounds having low molecular weight (NIKU-PAAVOLA et al. 1999), depletion of nutrients, or microbial competition (LUND et al. 1995). The main objective of this research study was to investigate the interactions between *Lactobacillus rhamnosus* VT1 and *Lactobacillus reuteri* CCM 3625 and several fungal strains in a milk environment simulating the surface of fermented dairy products and to try to characterise antifungal metabolites produced by both lactobacilli strains.

MATERIAL AND METHODS

Microorganisms

- *Lactobacillus rhamnosus* VT1 (i): strain isolated and identified at the Department of Dairy and Fat Technology, Institute of Chemical Technology, Prague.

This research was supported by the Grant Agency of the Czech Republic (Grant No. 525/98/0652 and Grant No. CEZ: J19/98: 223300006 of the Ministry of Education, Youth and Sports of the Czech Republic).
• *Fusarium* sp. DMF 0101: strain isolated from spoilt processed cheese.
• *Aspergillus* sp. DMF 0801: strain isolated from spoilt fermented dairy product.
• *Penicillium* sp. DMF 0006: strain isolated from spoilt processed cheese.

The fungal strains were isolated at the Department of Dairy and Fat Technology, Prague Institute of Chemical Technology and identified at the Department of Botany, Charles University, Prague. They have been subcultured monthly, using Potato Dextrose Agar – PDA (Oxoid, UK) slants. The incubation was done at room temperature in daylight for 5 to 10 days until a typical appearance, including intensive mycelial growth and sporulation, were achieved.

MRS Broth Supernatants

Both lactobacilli strains were cultivated in MRS broth at 37°C for 18 h. After the cultivation cells were removed by centrifugation (4000 rpm, at 4°C, for 10 min). One part of the supernatant was adjusted to pH 6.0 with 0.1 mol/l NaOH. Both cell-free supernatants, pH adjusted and non-adjusted, were heated in a water bath to 100°C for 5 min. After heat treatment supernatants were cooled and stored at –22°C.

Milk Agar Plate Method

A partially modified method by SUZUKI et al. (1991) was used. The modification consisted firstly in a different way of plate inoculation by moulds, secondly in testing the activity of both living lactic acid bacteria and supernatants and organic acids, as is described below. Instead of streaking used by Suzuki, a defined amount of mould inoculum was added.

The milk agar plates were prepared as follows: 5 ml of concentrated sterile milk, prepared by dissolving 10 g of skim milk powder (Danone Ltd., CR) in 45 ml distilled water, was inoculated with a loopful of the *Lactobacillus* sp. strain tested. For better growth of lactobacilli 0.5% (w/w) yeast extract (Oxoid, UK) was added to the skim milk. Inoculated milk was solidified with 10 ml of liquid 1.5% w/w bacteriological agar (containing 100 mg/ml of bromcresolepurple – BCP). Ten ml of soft agar (liquid agar containing 0.75% w/w agar and 100 mg/ml BCP) were overlaid. On the surface of soft agar 200 µl of a spore suspension was inoculated. The spore suspension was prepared by washing freshly cultivated PDA mould slants with 5 ml of sterile peptone/saline diluent containing 0.1% v/v Tween 80. The concentration of spores was adjusted to \(A_{600} = 0.3 \) in order to obtain approx. \(10^5 \) spores/ml.

The method was modified by the addition of supernatant or organic acids into milk with yeast extract instead of inoculation with *Lactobacillus* strain. The cell free supernatant, either with pH adjusted to 6.0, or without any pH adjustment, was added in the amount of 20% v/v.

The following sole acids or acid combinations were added to milk with 0.5% w/w yeast extract: 1% w/w lactic acid (LA) (Sigma-Aldrich, BRD), 0.2% w/w acetic acid (AA), (Penta, CR) and 0.2% w/w succinic acid (SA) (Lachema, CR). In this case *Fusarium* sp. DMF 0101 was used as the indicator strain.

Isotachophoretic Analysis of Organic Acids

The qualitative and quantitative analysis of organic acids produced by each *Lactobacillus* strain in MRS broth and milk with 0.5% w/w yeast extract was done after 18 h of cultivation at 37°C. The sample (1 g) was placed in a volumetric flask, dissolved in distilled water and filled with distilled water up to 100 ml. After filtration the sample was subjected to isotachophoretic analysis using the Isotachophoretic Analyser ZKI-01 (SK) under the following conditions: the leading electrolyte contained 0.01 mol per1HCl and α-aminocaproic acid (Lachema, CR) (pH 4.25), and purified caproic acid (Lachema, CR) of pH 4.5 was used as the terminating electrolyte. An electric current in the pre-separative column of 25 µA and in the analytical column of 50 µA was applied. The evaluation was done using the calibration curve and the concentration of each acid was expressed in % w/w. Analyses were repeated at least twice and the results presented in Table 2 are the means of all replications.

Effect of Enzymes on the Antifungal Metabolites

The character of antifungal metabolites of both *Lactobacillus* strains was determined by their reaction with 4 different enzymes: 3 proteolytic and 1 saccharolytic. Solutions of trypsin, pepsin, pronase E and α-amylase (Fluka, Switzerland) were prepared in phosphate buffer at optimal pH values for each enzyme. The sets of cell-free *Lactobacillus* MRS supernatants were treated with enzymes (having a concentration of 1 mg/g) and incubated at 37°C for 2 h. MRS cell-free supernatants of each *Lactobacillus* strain adjusted to pH 6.0 and heat treated were used as a control. After the incubation pH value of each supernatant was adjusted back to 6.0. The remaining antifungal activity was detected by the well agar diffusion method. The agar plates were prepared using 15 ml PDA, 200 µl of the spore suspension of *Fusarium* sp. DMF 0101 was inoculated onto the surface of each plate. After the inoculation a well (12 mm in diameter) was cut into the
heterofermentative lactobacilli exhibited higher antifungal activity, the effect of enzymes on supernatants was tested twice, the results given in Table 4 are the means of these two tests.

RESULTS AND DISCUSSION

Antifungal properties of two *Lactobacillus* strains and the nature of their metabolites were further characterized in this study. The partially modified method by SUZUKI et al. (1991) was used to observe the interactions between two *Lactobacillus* strains and three mould strains in a milk environment simulating the surface of fermented milk products. The results expressed in Table 1 document that the actively growing cells of both *Lactobacillus rhamnosus* VT1 and *Lactobacillus reuteri* CCM 3625 strains showed more pronounced antifungal activity than 20% v/v MRS broth cell-free supernatants added to milk. As is obvious from Table 1, the growing cells of *Lactobacillus reuteri* CCM 3625 as well as the addition of 20% v/v MRS broth supernatant of this strain caused a total growth inhibition of *Fusarium* sp. DMF 0101, while only actively growing cells of *Lactobacillus rhamnosus* VT1 showed the same effect. There was nearly no difference in the activity of respective supernatants differing in pH (adjusted to pH 6 or approx. 4–4.5 after incubation). Similarly, various authors found that members of facultatively heterofermentative lactobacilli exhibited higher antifungal activity than homofermentative lactobacilli: VANDENBERG et al. (1988) in *Lactobacillus rhamnosus* NRRL-B-15972, Suzuki et al. (1991) in *Lactobacillus casei* subsp. *casei* ATCC 393, *Lactobacillus rhamnosus* ATCC 7469, *Lactobacillus plantarum* 102, and *Lactobacillus plantarum* 135, and NIKU-PAAVOLA et al. (1999) in *Lactobacillus plantarum* VTTE-78076. Strong antifungal activity of obligately heterofermentative *Lactobacillus reuteri* strains was already described (AXELSSON et al. 1989; LINDGREN & DOBROGOSZ 1990).

Out of the three mould strains tested, *Fusarium* sp. DMF 0101 was the most sensitive; its growth was totally suppressed by actively growing cells of both lactobacilli strains. The growth of *Penicillium* sp. DMF 0006 and *Aspergillus* sp. DMF 0801 was only partially suppressed, but neither of these moulds ever produced any vegetative spores. *Fusarium* sp. DMF 0101 was therefore chosen for further experiments as a test strain.

Based on previous results documenting the antifungal effectiveness of organic acids produced by lactic acid bacteria (OUWEHAND 1998; BATISH et al. 1989), both *Lactobacillus* strains were tested by isotachophoretic assay for the production of organic acids. The results are presented in Table 2 and document well that facultatively heterofermentative strain *Lactobacillus rhamnosus* VT1 produced only lactic acid (utilising glucose in MRS broth and lactose in milk) whereas the obligately heterofermentative *Lactobacillus reuteri* CCM 3625 produced the mixture of lactic, acetic and succinic acids both in MRS broth and in milk.

In order to see whether the organic acids possess any antifungal activity, the effect of sole organic acids or their combinations was tested using the milk agar plate method and *Fusarium* sp. DMF 0101 as a test strain. Table 3 shows that maximum antifungal activity was exhibited by acetic acid alone or in combination with lactic acid and/
or succinic acid in concentrations that are produced by \textit{Lactobacillus} \textit{reuteri} CCM 3625 strain. The activity of lactic acid alone in quantity produced by \textit{Lactobacillus rhamnosus} VT1 was not sufficient to suppress the growth of test mould like actively growing cells of this strain. Thus it is probable that \textit{Lactobacillus reuteri} CCM 3625, a species with well described antimicrobial (antibacterial and antifungal) activity, was able to suppress the growth of the mould test strain by the mere production of a mixture of organic acids. On the other hand, the \textit{Lactobacillus rhamnosus} VT1 strain probably produced some other antifungal metabolite(s) that acted concurrently with lactic acid and totally suppressed the growth of \textit{Fusarium} sp. DMF 0101.

We tried further to characterise the nature of the metabolites with antifungal activity of both lactobacilli strains by treating MRS broth supernatants with proteolytic and saccharolytic enzymes. As is documented in Table 4, the antifungal activity of neither of the strains was influenced by the use of these enzymes. This indicates that they are neither of proteinaceous nor of sacharidic character. The characterisation of antifungal metabolites of both strains is still in progress.

Antifungal activity seems to be a promising advantage of both lactobacilli strains, considering their potential applications in dairy technologies. \textit{Lactobacillus rhamnosus} VT1, after testing other important metabolic activities (acidifying, proteolytic), may be used for cheese production as a part of the so called NSLAB (non starter lactic acid bacteria), \textit{Lactobacillus reuteri} 3265, to produce fermented milks.

\textbf{References}

SOUHRA

Schopnost potlačovat růst plísní v mléčném prostředí byla sledována u kmenů Lactobacillus rhamnosus VT1 a Lactobacillus reuteri CCM 3625 metodou mléčných agarových ploten. Výšší antifungální aktivitu vykazovaly aktivně rostoucí buňky obou laktobacilů ve srovnání se supernatanty získanými po kultivaci kmenů v MRS bujou, které obsahovaly naprodukováno metabolity. Bylo prokázáno, že inhibice růstu plísní kmenem Lactobacillus reuteri CCM 3625 je spojena s produkci směsi kyselin: mléčné (0,9 % hm.), octové (0,2 % hm.) a jantarové (0,2 % hm.). V případě kmene Lactobacillus rhamnosus VT1 inhibici růstu plísní pravděpodobně způsobuje kyselina mléčná (1,2 % hm.) společně s dalšími antifungálními aktivními metabolity nebilkovinné a nesacharidické povahy.

KLIČOVÁ SLOVA: Lactobacillus; mléčné agarové plotny; kontrola růstu plísní; antifungální metabolit

CORRESPONDING AUTHOR:

Doc. Ing. MILADA PLOCKOVÁ, CSc., Vysoká škola chemicko-technologická, Ústav technologie mléka a tuků, Technická 5, 166 28 Praha 6, Česká republika, tel.: +42 2 24 35 32 75, fax: +42 2 24 35 32 85, e-mail: milada.plockova@vscht.cz