Economic outcomes in relation to farmers’ age in the Czech Republic

https://doi.org/10.17221/117/2019-AGRICECONCitation:Hlouskova Z., Prasilova M. (2020): Economic outcomes in relation to farmers’ age in the Czech Republic. Agric. Econ. – Czech, 66: 149-159.
download PDF

The current paper aims to assess farming enterprise outcomes in the Czech Republic from a socio-economic perspective. The relationship between the age of a farms’ managers and its economic results has been analysed for 1 351 farms using the FADN (Farm Accountancy Data Network) database in order to determine whether farms’ economic results differ on the basis of the age of their managers. Our analysis confirms that there is indeed a correlation between manager age and a farming enterprise’s economic results. The results have been analysed in detail according to the age groups of managers and farm owners, farm specialization, and farm size. The farm net value added per annual work unit reached the best values in businesses managed by young farmers in crop production (EUR 34 445) and young farmers in large enterprises (EUR 43 400). The oldest farmers, specializing in milk production, had the highest level of indebtedness (0.39). The data reveal that the age of farmers is inversely proportional to the level of indebtedness, with level of debt decreasing with increasing farmer age. A Mann-Whitney U test (with Bonferroni correction) confirms a statistically significant difference between young farmers and the remaining three age groups in the ratio of production to cost.

References:
Alasia A., Bollman R.D., Weersink A., Cranfield J. (2007): Off-Farm Labour Decisions of Canadian Farm Operators in 2001: The Role of Operator, Farm, Community and Regional Determinants. Ottawa, Ministry of Industry, Statistics Canada Agriculture Division.
 
Bohackova I., Hrabankova M. (2011): Ageing of agricultural population and generation exchange in EU member states. Acta Universitatis Bohemiae Meridionales, XIV: 45–52.
 
Calus M., van Huylenbroeck G., van Lierde D. (2008): The relationship between farm succession and farm assets on Belgian farms. Sociologia Ruralis, 48: 38–56. https://doi.org/10.1111/j.1467-9523.2008.00448.x
 
Cruz L., Ramos P.N., Barata E., Sargento A.L. (2017): Assessing an agri-food development strategy: a bi-regional input–output model with resource-constrained sectors. European Review of Agricultural Economics, 44: 860–882. https://doi.org/10.1093/erae/jbw028
 
DEFRA (2015): Farm Succession: Results from the Farm Business Survey, England 2013/14. [National Statistics]. Department for Environment, Food and Rural Affairs, GOV.UK. Available at https://www.gov.uk (accessed Dec 10, 2018).
 
Duesberga S., Bogue P., Renwick A. (2017): Retirement farming or sustainable growth – land transfer choices for farmers without a successor. Land Use Policy, 61: 526–535. https://doi.org/10.1016/j.landusepol.2016.12.007
 
European Commission (EC) (2009): Commission Regulation (EC) No 867/2009 of 21 September 2009, amending and correcting Regulation (EC) No 1242/2008 establishing a Community typology for agricultural holdings, European Commission.
 
European Commission (EC) (2012): RI/CC 882 Definitions of Variables Used in FADNStandard Results. Community Committee for the Farm Accountancy Data Network (FADN). Brussels, Directorate-General for Agriculture and Rural Development.
 
European Commission (EC) (2017): Young Farmers in the EU – Structural and Economic cCharacteristics. European Commission, EU Agricultural and Farm Economics Briefs, 15, Oct 2017.
 
Eurostat (2019): Eurostat Database. Eurostat. Available at http://ec.europa.eu/eurostat/data/database (accessed Oct 20, 2019).
 
FADN CZ Database (2018): Farm Accountancy Data Network database in the Czech Republic. Available at http://www.fadn.cz
 
Hamilton W., Bosworth G., Ruto E. (2015): Entrepreneurial younger farmers and the “young farmer problem” in England. Agriculture and Forestry, 61: 61–69.
 
Hansson H. (2008): How can farmer managerial capacity contribute to improved farm performance? A study of dairy farms in Sweden. Acta Agriculturae Scandinavica, Section C – Food Economics, 5: 44–61. https://doi.org/10.1080/16507540802172808
 
Haryanto T., Talib B.A., Salleh N.H.M. (2016): Technical efficiency and technology gap in Indonesian rice farming. Agris on-line Papers in Economics and Informatics, 8: 29–38. https://doi.org/10.7160/aol.2016.080303
 
Hassan T. (2015): Economic analysis of factors affecting the farmer income under traditional farming system in South Darfur State – Sudan. African Journal of Agricultural Science and Technology, 1: 114–119.
 
Ingram J., Kirwan J. (2011): Matching new entrants and retiring farmers through farm joint ventures: Insights from the Fresh Start Initiative in Cornwall, UK. Land Use Policy, 28: 917–927. https://doi.org/10.1016/j.landusepol.2011.04.001
 
Jette-Nantel S., Freshwater D., Beaulieu M., Katchova A. (2011): Farm Income Variability and Off-Farm Diversification in Canadian Agriculture, Agriculture and Rural Working Paper Series. Statistics Canada, Catalogue No. 21-601-M-No. 93.
 
Leonard B., Kinsella A., O’Donoghue C., Farrell M., Mahon M. (2017): Policy drivers of farm succession and inheritance. Land Use Policy, 61: 147–159. https://doi.org/10.1016/j.landusepol.2016.09.006
 
May D., Arancibia S., Behrendt K., Adams J. (2019): Preventing young farmers from leaving the farm: Investigating the effectiveness of the young farmer payment using a behavioural approach. Land Use Policy, 82: 317–327. https://doi.org/10.1016/j.landusepol.2018.12.019
 
Medonos T., Ratinger T., Hruska M., Spicka J. (2012): The assessment of the effects of investment support measures of the Rural Development Programmes: the case of the Czech Republic. Agris on-line Papers in Economics and Informatics, 4: 35–48.
 
Morais M., Binotto E., Borges J.A.R. (2017): Identifying beliefs underlying successors’ intention to take over the farm. Land Use Policy, 68: 48–58. https://doi.org/10.1016/j.landusepol.2017.07.024
 
Riley M. (2016): Still being the ‘good farmer’: (non-) retirement and the preservation of farming identities in older age. Sociologia Ruralis, 56: 96–115. https://doi.org/10.1111/soru.12063
 
Schuh B. et al. (2019): Research for AGRI Committee – The EU Farming Employment: Current Challenges and Future Prospects. Brussels, European Parliament, Policy Department for Structural and Cohesion Policies.
 
Simpach O., Pechrova M. (2015): Development of the Czech farmers’ age structure and the consequences for subsidy policy. Agris on-line Papers in Economics and Informatics, 7: 57–69. https://doi.org/10.7160/aol.2015.070306
 
Smalheiser N.R. (2017): Nonparametric tests. In: Smalheiser N.R.: Data Literacy. Cambridge, Massachusetts, USA, Academic Press: 157–167.
 
Szőllősi L., Szűcs I., Huzsvai L., Molnár S.J. (2019): Economic issues of Hungarian table egg production in different housing systems, farm sizes and production levels. Journal of Central European Agriculture, 20: 995–1008. https://doi.org/10.5513/JCEA01/20.3.2284
 
Vitunskiene V., Dabkiene V. (2016): Framework for assessing the farm relative sustainability: a Lithuanian case study. Agricultural Economics – Czech, 62: 134–148. https://doi.org/10.17221/125/2015-AGRICECON
 
Williamson J., Williams R. (2017): Beginning Farmers and Age Distribution of Farmers, Economic Research Service. USDA. Available at https://www.ers.usda.gov (accessed Dec 6, 2018).
 
Zagata L., Hadkova S., Mikovcova M. (2015): Basic outline of the problem of the “ageing population of farmers” in the Czech Republic. Agris on-line Papers in Economics and Informatics, 7: 89–96. https://doi.org/10.7160/aol.2015.070110
 
Zagata L., Sutherland L. (2015): Deconstructing the ‘young farmer problem in Europe’. Towards a research agenda. Journal of Rural Studies, 38: 39–51. https://doi.org/10.1016/j.jrurstud.2015.01.003
 
download PDF

© 2020 Czech Academy of Agricultural Sciences