The butterfly effect in the price of agricultural products: A multidimensional spatial-temporal association mining

https://doi.org/10.17221/128/2021-AGRICECONCitation:

Guo Y., Hu X., Wang Z., Tang W., Liu D., Luo Y., Xu H. (2021): The butterfly effect in the price of agricultural products: A multidimensional spatial-temporal association mining. Agric. Econ. – Czech, 67: 457–467.

download PDF

With the advent of the era of big data, data mining methods show their powerful information mining ability in various fields, seeking the association information hidden in the data, which is convenient for people to make scientific decisions. This paper analyses the butterfly effect in the agricultural product industry chain from the perspective of producer and consumer by using multidimensional time and space theory and proposes a new price forecasting method. We consider that the price change of agricultural products is not only affected by the balance of market supply and demand but also by the factors of time and space. Taking the pig industry chain of Sichuan Province as an example, this paper explores and excavates the data from 2010 to 2020 in the time dimension. Interestingly, we found that the price changes in pork in the market are generally highly correlated with the prices of slaughtered pigs, piglets a few weeks ago and the prices of multiple feed a few months ago. Based on the precise time-space factors, we improved the price forecasting model, greatly improved the accuracy of price prediction, and proved the effectiveness of multidimensional spatiotemporal association mining. The research in this paper is helpful to establish a brand-new agricultural product price prediction theory, which is of great significance to the development of the agricultural economy and global poverty alleviation.

References:
Abdallah M.B., Farkas M.F., Lakner Z. (2020): Analysis of meat price volatility and volatility spillovers in Finland. Agricultural Economics, 66: 84–91.
 
AGDATA (2020): Price Data of Agricultural Products. [Dataset]. China, BRIC. China's Agricultural Big Data (AGDATA). Available at http://www.agdata.cn/dataManual/dataIndustryTree.html (accessed Mar 6, 2021).
 
Agrawal R., Imieliński T., Swami A. (1993): Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington D.C., USA, May 25–28, 1993: 207–216.
 
Altay E.V., Alatas B. (2020): Intelligent optimization algorithms for the problem of mining numerical association rules. Physica A: Statistical Mechanics and its Applications, 540: 123142. https://doi.org/10.1016/j.physa.2019.123142
 
Bashir S. (2020): An efficient pattern growth approach for mining fault tolerant frequent itemsets. Expert Systems with Applications, 143: 1–15. https://doi.org/10.1016/j.eswa.2019.113046
 
Bellemare M.F. (2015): Rising food prices, food price volatility, and social unrest. American Journal of Agricultural Economics, 97: 1–21. https://doi.org/10.1093/ajae/aau038
 
Borawski P., Guth M., Truszkowski W., Zuzek D., Beldycka-Borawska A., Mickiewicz B., Szymanska E., Harper J.K., Dunn J.W. (2020): Milk price changes in Poland in the context of the Common Agricultural Policy. Agricultural Economics, 66: 19–26.
 
Damle C., Yalcin A. (2007): Flood prediction using time series data mining. Journal of Hydrology, 333: 305–316. https://doi.org/10.1016/j.jhydrol.2006.09.001
 
Drachal K. (2019): Analysis of agricultural commodities prices with new Bayesian model combination schemes. Sustainability, 11: 1–23. https://doi.org/10.3390/su11195305
 
Elavarasan D., Vincent D.R. (2020): Reinforced XGBoost machine learning model for sustainable intelligent agrarian applications. Journal of Intelligent & Fuzzy Systems, 39: 7605–7620.
 
Gou J., Ma H., Ou W., Zeng S., Rao Y., Yang H. (2019): A generalized mean distance-based K-Nearest Neighbor classifier. Expert Systems with Applications, 115: 356–372. https://doi.org/10.1016/j.eswa.2018.08.021
 
Guo Y., Fu Y., Hao F., Zhang X., Wu W., Jin X., Bryant Ch.R., Senthilnath J. (2021): Integrated phenology and climate in rice yields prediction using machine learning methods. Ecological Indicators, 120: 106935. https://doi.org/10.1016/j.ecolind.2020.106935
 
Haider S.A., Naqvi S.R., Akram T., Umar F., Shahzad A., Sial M., Khaliq S., Kamran M. (2019): LSTM neural network based forecasting model for wheat production in Pakistan. Agronomy, 9: 1–12. https://doi.org/10.3390/agronomy9020072
 
Jin X.B., Yu X.H., Wang X.Y., Bai Y.T., Su T.L., Kong J.L. (2020): Deep learning predictor for sustainable precision agriculture based on internet of things system. Sustainability, 12: 1–18. https://doi.org/10.3390/su12041433
 
Liu H., Shen L. (2020): Forecasting carbon price using empirical wavelet transform and gated recurrent unit neural network. Carbon Management, 11: 25–37. https://doi.org/10.1080/17583004.2019.1686930
 
Lorenz E.N. (1963): Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20: 130–141. https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
 
Maimaitijiang M., Sagan V., Sidike P., Hartling S., Esposito F., Fritschiet F.B. (2020): Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sensing of Environment, 237: 111599. https://doi.org/10.1016/j.rse.2019.111599
 
Muhairat M., Alzu'bi S., Hawashin B., Elbes M., Al-Ayyoub M. (2020): An intelligent recommender system based on association rule analysis for requirement engineering. JUCS – Journal of Universal Computer Science, 26: 33–49. https://doi.org/10.3897/jucs.2020.003
 
Panda S.S., Ames D.P., Panigrahi S. (2010): Application of vegetation indices for agricultural crop yield prediction using neural network techniques. Remote Sensing, 2: 673–696. https://doi.org/10.3390/rs2030673
 
Ribeiro M.H.D.M., dos Santos Coelho L. (2020): Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series. Applied Soft Computing, 86: 105837. https://doi.org/10.1016/j.asoc.2019.105837
 
Ryu G., Nasridinov A., Rah H., Yoo K.H. (2020): Forecasts of the amount purchase pork meat by using structured and unstructured big data. Agriculture, 10: 1–14. https://doi.org/10.3390/agriculture10010021
 
Sakai H., Nakata M., Watada J. (2020): NIS-Apriori-based rule generation with three-way decisions and its application system in SQL. Information Sciences, 507: 755–771. https://doi.org/10.1016/j.ins.2018.09.008
 
SCPDARA (2020): Pig Industry Data. [Dataset]. China, Department of Agriculture and Rural Areas of Sichuan Province (SCPDARA). Available at http://www.scdata.net.cn/odweb/catalog/index.htm (accessed Aug 8, 2020).
 
Shah A., Halim Z. (2019): On efficient mining of frequent itemsets from big uncertain databases. Journal of Grid Computing, 17: 831–850. https://doi.org/10.1007/s10723-018-9456-0
 
Shao Y., Liu B., Wang S., Li G. (2020): Software defect prediction based on correlation weighted class association rule mining. Knowledge-Based Systems, 196: 105742. https://doi.org/10.1016/j.knosys.2020.105742
 
Shin S., Lee M., Song S. (2018): A prediction model for agricultural products price with LSTM network. The Journal of the Korea Contents Association, 18: 416–429.
 
Spasojević B., Đukić A., Erić O. (2018): Price stability of agricultural products in the European Union. Ekonomika Poljoprivrede, 65: 1585–1598. https://doi.org/10.5937/ekoPolj1804585S
 
Sun L.N. (2020): An improved Apriori algorithm based on support weight matrix for data mining in transaction database. Journal of Ambient Intelligence and Humanized Computing, 11: 495–501. https://doi.org/10.1007/s12652-019-01222-4
 
Taghizadeh-Hesary F., Rasoulinezhad E., Yoshino N. (2019): Energy and food security: Linkages through price volatility. Energy Policy, 128: 796–806. https://doi.org/10.1016/j.enpol.2018.12.043
 
Ünvan Y.A. (2021): Market basket analysis with association rules. Communications in Statistics – Theory and Methods, 50: 1615–1628. https://doi.org/10.1080/03610926.2020.1716255
 
Wang Y., Wang J., Wang X. (2020): COVID-19, supply chain disruption and China's hog market: A dynamic analysis. China Agricultural Economic Review, 12: 427–443. https://doi.org/10.1108/CAER-04-2020-0053
 
Wei M.C.F., Molin J.P. (2020): Soybean yield estimation and its components: A linear regression approach. Agriculture, 10: 1–13.
 
Wu T.Y., Lin J.C.W., Yun U., Chen C.H., Srivastava G., Lv X. (2020): An efficient algorithm for fuzzy frequent itemset mining. Journal of Intelligent & Fuzzy Systems, 38: 5787–5797.
 
Xie H., Wang B. (2017): An empirical analysis of the impact of agricultural product price fluctuations on China's grain yield. Sustainability, 9: 1–14. https://doi.org/10.3390/su9060906
 
Zhang S., Du Z., Wang J.T. (2014): New techniques for mining frequent patterns in unordered trees. IEEE Transactions on Cybernetics, 45: 1113–1125. https://doi.org/10.1109/TCYB.2014.2345579
 
Živkov D., Njegić J., Pećanac M. (2019): Multiscale interdependence between the major agricultural commodities. Agricultural Economics, 65: 82–92.
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti