Potential and competitiveness of EU countries in terms of slaughter livestock production

https://doi.org/10.17221/156/2019-AGRICECONCitation:Tłuczak A. (2019): Potential and competitiveness of EU countries in terms of slaughter livestock production. Agric. Econ. – Czech, 65: 550-559.
download PDF

Models and methods of spatial econometrics are gaining more and more popularity. Their advantage is the opportunity to examine the interrelationships between individual territorial units. These methods, apart from the own potential of the region, take into account the impact of neighbouring objects and location in space. The aim of the study is to examine the relationship between the potential and the level of competitiveness of individual European Union countries in the field of slaughter cattle production. In addition, the paper attempts to determine the specialisation of individual EU countries in the production of slaughter animals by sector. The analysis covered the years 2010–2016, using Eurostat data. The obtained results allow indicating countries in which there is a strong concentration of income potential (Sweden, Spain, Great Britain, France and Belgium). Countries in which the highest values of the potential quotients in the entire European Union are distinguished (Poland, Finland and Belgium).

Arcelus F.J. (1984): An extension of shift-share analysis. Growth and Change, 15: 3–8. https://doi.org/10.1111/j.1468-2257.1984.tb00719.x
Baltagi B., Arbia G. (2008): Spatial Econometrics, Methods and Applications. Springer Science & Business Media: 133–137.
Bergstrand J.H. (1987): The gravity equation in international trade: Some microeconomic fundations and empirical evidence. The Review of Economics and Statistics, 67: 474–481. https://doi.org/10.2307/1925976
Berzeg K. (1978): The empirical content of shift-share analysis. Journal of Regional Science, 18: 463–468. https://doi.org/10.1111/j.1467-9787.1978.tb00563.x
Bureau J.-C., Butault J.-P. (1992): Productivity gaps, price advantages and competitiveness in EC agriculture. European Review of Agricultural Economics, 19: 25–48. https://doi.org/10.1093/erae/19.1.25
Coffey W. (1978): Income relationships in Boston and Toronto: A Tale for two countries? Canadian Geographer, 22: 112–129.  https://doi.org/10.1111/j.1541-0064.1978.tb00626.x
Dooley A., Smeaton D., Sheath G., Ledgard S. (2009): Application of multiple criteria decision analysis in the New Zealand agricultural industry. Journal of Multi-Criteria Decision Analysis, 16: 39–53. https://doi.org/10.1002/mcda.437
Dunn E.S. (1960): A statistical and analytical technique for regional analysis. Papers and Proceedings of the Regional Science Association, 6: 98–112. https://doi.org/10.1111/j.1435-5597.1960.tb01705.x
Dutton G. (1970): Macroscopic aspects of metropolitan evolution. Harvard Papers in Theoretical Geography, Geography of Income Series, 1: 114.
Edwards M.E. (2017): Regional and Urban Economics and Economic Development: Theory and Methods. Routledge: 154–156.
Esteban-Marquillas J.M. (1972): Shift and share analysis revisited. Regional and Urban Economics, 2: 249–261. https://doi.org/10.1016/0034-3331(72)90033-4
Eurostat Database (2019a): Agricultural Production – Livestock and Meat. Eurostat. Available at https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agricultural_production_-_livestock_and_meat&oldid=427096
Eurostat Database (2019b): Statistics on Rural Areas in the EU. Eurostat. Available at https://ec.europa.eu /eurostat/statistics-explained/ index.php/ Statistics_on_rural_ areas_in_ the_EU#Population_distribution_by_degree_ of_urbanisation
Eurostat Database (2019c): GDP per Capita in PPS. Eurostat. Available at https://ec.europa .eu/ eurostat/ tgm/table.do?tab =table&init=1 &language=en& pcode=tec00114&plugin=1
Ferto I., Hubbard L.J. (2003): Revealed comparative advantage and competitiveness in Hungarian agri-food sectors. The World Economy, 26: 247–259. https://doi.org/10.1111/1467-9701.00520
Fothergill S., Gudgin G. (1979): In defence of shift-share. Urban Studies, 16: 309–319. https://doi.org/10.1080/713702551
Friedmann J. (1967): A General Theory of Polarised Development. Ford Foundation, Urban and Regional Development Advisory Program in Chile, Santiago.
Frohberg K., Hartmann M. (1997): Comparing measures of competitiveness. Discussion Paper. Leibniz-Institut für Agrarentwicklung in Mittel- und Osteuropa (IAMO), Halle (Saale), Institute of Agricultural Development in Central and Eastern Europe, 2.
Gorton M., Davidova S., Ratinger T. (2000): The Competitiveness of Agriculture in Bulgaria and the Czech Republic Vis-à-Vis the European Union (CEEC and EU Agricultural Competitiveness). Comparative Economic Studies, 42: 59. https://doi.org/10.1057/ces.2000.2
Head K., Mayer T. (2011): Gravity, market potential and economic development. Journal of Economic Geography, 11: 281–294. https://doi.org/10.1093/jeg/lbq037
Houston D.B. (1967): The shift and share analysis of regional growth: A critique. Southern Economic Journal, 33: 577–581. https://doi.org/10.2307/1055653
Jambor A., Babu S. (2016): Competitiveness: Definitions, theories and measurement. In: Competitiveness of Global Agriculture. Springer, Cham.
Josling T., Kelch D., Liapis P., Tangerman S. (1998): Agriculture and European Union enlargement. Market and Trade Economics Division, Economic Research Service, U.S. Department of Agriculture. Technical Bulletin No. 1865. Washington, D.C.
Leeuwen E., Strijker D., Terluin I. (2010): Regional concentration and specialisation in agricultural activities in EU-9 regions (1950–2000). European Spatial Research and Policy, 17: 23–39. https://doi.org/10.2478/v10105-010-0002-8
Manos B., Bournaris T., Chatzinikolaou P. (2010): Tobacco decoupling impacts on income, employment and environment in European tobacco regions. International Journal of Business Innovation and Research, 4: 281–297. https://doi.org/10.1504/IJBIR.2010.033348
Niedercorn J.H., Bechdolt Jr. B.V. (1969): An economic derivation of the “gravity law” of spatial interaction. Journal of Regional Science, 9: 273–282. https://doi.org/10.1111/j.1467-9787.1969.tb01340.x
Perloff H.S., Dunn E.S., Lampard E.E., Muth R.F. (1960): Regions, Resources and Economic Growth. Johns Hopkins Press, Baltimore.
Ragkos A., Samathrakis V., Theodoridis A., Notta O., Batzios Ch., Tsourapas E. (2015): Specialisation and concentration of agricultural production in the region of Central Macedonia (Greece). In: Proceeding of 7th International Conference on Information and Communication Technologies in Agriculture, Food and Environment (HAICTA 2015).
Rich D.C. (1980): Potential Models in Human Geography. Concepts and Techniques in Modern Geography. Geo Abstracts, 26, Norwich.
Sobczak E. (2012): Smart specialisation of workforce structure in the European Union countries – Dynamic analysis applying shift-share analysis method, comparative economic research. Central and Eastern Europe, 15: 219– 230.
Stevens B., Moore C.L. (1980): A critical review of the literature on shift-share as a forecasting technique. Journal of Regional Science, 20: 419–437. https://doi.org/10.1111/j.1467-9787.1980.tb00660.x
Tangermann S., Banse M. (Eds.) (2000): Central and Eastern European Agriculture in an Expanding European Union. Wallingford, New York.
Tłuczak A. (2016): Esteban-Marquillas method of changes in competitiveness and specialisation of the region on the example of animal production in Poland. Quantitative Methods in Economics, 17: 152–160.
Tłuczak A. (2017): Spatial competitiveness of agriculture in European Union countries. Problems of World Agriculture, 17: 279–285.
Vickerman R., Spiekermann K., Wegener M. (1999): Accessibility and Economic Development in Europe. Regional Studies, 33: 1–15. https://doi.org/10.1080/00343409950118878
Zawalinska K. (2004): The Competitiveness of Polish Agriculture in the Context of Integration with the European Union. Press of the Warsaw University Department of Economics, Warsaw.
Zerger A., Warren G., Hill P., Robertson D., Weidemann A., Lawton K. (2011): Multi-criteria assessment for linking regional conservation planning and farm-scale actions. Environmental Modelling and Software, 26: 103–110. https://doi.org/10.1016/j.envsoft.2010.04.001
download PDF

© 2020 Czech Academy of Agricultural Sciences