Automatic discovery of the regression model by the means of grammatical and differential evolution 

https://doi.org/10.17221/160/2014-AGRICECONCitation:Lýsek J., Šťastný J. (2014): Automatic discovery of the regression model by the means of grammatical and differential evolution . Agric. Econ. – Czech, 60: 546-552.
download PDF

In the contribution, there is discussed the usage of the method based on the grammatical and differential evolution for the automatic discovery of regression models for discrete datasets. The combination of these two methods enables the process to find the precise structure of the mathematical model and values for the model constants separately. The used method is described and tested on the selected regression examples. The results are reported and the obtained mathematical models are presented. The advantages of the selected approach are described and compared to the classical methods.

References:
Alabdulkader A.M., Al-Amoud A.I., Awad F.S. (2012):   Optimization of the cropping pattern in Saudi Arabia using a mathematical programming sector model. Agricultural Economics (Zemědělská ekonomika), 58, 56-60  https://doi.org/10.17221/8/2011-AGRICECON
 
Beránek L. (2012): The Use of the Belief Function Theory for a Situation Inference. In: Proceedings of 18th International Conference on Soft Computing – MENDEL, pp. 106–111. Brno University of Technology, Brno; ISBN 978-80-214-4540-6.
 
Čížek L., Šťastný J. (2013): Comparison of Genetic Algorithm and Graph-Based Algorithm for the TSP. In: 19th International Conference on Soft Computing – MENDEL 2013. Brno University of Technology, Brno, pp. 433–438; ISBN 978-80-214-4755-4.
 
Hopcroft J.E., Ullman J.D. (1969): Formal Languages and their Relation to Automata. Addison-Wesley, Boston; ISBN 978-0201029833.
 
Kapounek S., Poměnková J. (2013): The endogeneity of optimum currency area criteria in the context of financial crisis: Evidence from the time-frequency domain analysis. Agricultural Economics (Zemědělská ekonomika), 59, 389-395  https://doi.org/10.17221/9/2013-AGRICECON
 
Koza R.J. (1992): Genetic Programming II: On the Programming of Computers by Means of Natural Selection. The MIT Press; ISBN 0-262-11170-5.
 
Levenshtein V.I. (1966): Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady, 10: 707–710.
 
Lýsek J., Šťastný J., Motyčka A. (2012): Object Recognition by means of Evolved Detector and Classifier Program. In: Proceedings of 18th International Conference on Soft Computing – MENDEL 2012, pp. 82–87. Brno University of Technology, Brno; ISBN 978-80-214-4540-6.
 
Lýsek J., Šťastný J., Motyčka A. (2013): Comparison of Neural Network and Grammatical Evolution for Time Series Prediction. In: Proceedings of 19th International Conference on Soft Computing – MENDEL 2013, pp. 215–220. Brno University of Technology, Brno; ISBN 978-80-214-4755-4.
 
Meloun M., Militký J. (1994): Statistické zpracování experimentálních dat v chemometrii, biometrii, ekonometrii a v dalších oborech přírodních, technických a společenských věd. (Statistical processing of experimental data in chemometry, biometry, econometry and in other fields of natural and social sciences.) Plus Praha. ISBN 80-85.
 
Meloun M. (1996): Statistické zpracování experimentálních dat: sbírka úloh. (Statistical processing of experimental data: workbook.) Univerzita Pardubice; ISBN 80-7194-075-5.
 
Miller B.L., Goldberg D.E. (1995): Genetic Algorithms, Tournament Selection and the Effects of Noise. IlliGAL Report No. 95006, Department of General Engineering, University of Illinois, p. 13.
 
Mitchell M. (1999): An Introduction to Genetic Algorithms. MIT Press, Cambridge, Massachusetts; ISBN 0−262−13316−4.
 
Munk M., Drlík M. (2011): Influence of different session timeouts thresholds on results of sequence rule analysis in educational data mining. Communications in Computer and Information Science, 166: 60–74.
 
O’Neill M., Brabazon A., Adley C. (2004): Automatic Generation of programs for Classifcation Problems with Grammatical Swarm. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation (CEC 2004), pp. 104–110. Portland, Oregon; ISBN 0-7803-8515-2.
 
Popelka Ondřej, Šťastný Jiří (2009): WWW portal usage analysis using genetic algorithms. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 57, 201-208  https://doi.org/10.11118/actaun200957060201
 
Popelka O., Šťastný J. (2009): Uplatnění metod umělé inteligence v zemědělsko-ekonomických predikčních úlohách. (Using artificial intelligence methods for agricultural and economic data prediction.) Folia Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Brno; ISBN 978-80-7375-340-5.
 
Price K.V., Storn R.M., Lampinen J.A. (2005): Differential Evolution – a Practical Approach to Global Optimization. NCS Springer, Berlin Heidelberg; ISBN 978-3-540-31306-9.
 
Ryan C., O’Neill M. (2003): Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Kluwer Academic Publishers; ISBN 978-1-4615-0447-4.
 
Škorpil V., Šťastný J. (2009): Comparison Methods for Object Recognition. In: Proceedings of the 13th WSEAS International Conference on Systems. Rhodos, Greece, pp. 607–610; ISBN 978-960-474-097-0.
 
Štencl Michael, Popelka Ondřej, Šťastný Jiří (2011): Comparison of time series forecasting with artificial neural network and statistical approach. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 59, 347-352  https://doi.org/10.11118/actaun201159020347
 
Šťastný J., Škorpil V. (2007): Genetic Algorithm and Neural Network. In: Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Vouliagmeni, Greece, pp. 347–351. ISSN 1790-5117. ISBN 978-960-8457-96-6.
 
Veselý A. (2011): Economic classification and regression problems and neural networks. Agricultural Economics (Zemědělská ekonomika), 57, 150-157  https://doi.org/10.17221/50/2010-AGRICECON
 
download PDF

© 2020 Czech Academy of Agricultural Sciences