Economic and energy efficiency of agriculture

Wysokiński M., Domagała J., Gromada A., Golonko M., Trębska P. (2020): Economic and energy efficiency of agriculture. Agric. Econ. – Czech, 66: 355–364.

download PDF

Article concerns economic and energy efficiency of agriculture in European Union countries. The study period concerned 2016. For analysis and presentation of materials, descriptive, tabular and graphic methods and the Data Envelopment Analysis (DEA) method – CCR (Charnes, Cooper and Rhodes) model focused on input-oriented minimisation were used. An assessment of the socio-economic development of the EU countries was made using the following measures: Human Development Index (HDI) and Gross Domestic Product (GDP) per capita (USD per inhabitant). Modern agriculture depends on industrial energy sources and as the socio-economic development changes into more and more energy-intensive production technologies. After presenting the introduction and review of the literature, the economic and energy efficiency of agriculture in the EU countries in 2016 was examined, which was at a high level – the DEA reached 0.67. Then, the correlation between the socio-economic development of countries and their economic and energy efficiency was analysed. It was also found that along with socio-economic development in the EU countries, the economic and energy efficiency of agriculture is increasing.

Berger A.N., Humphrey D.B. (1997): Efficiency of financial institutions: International survey and directions for future research. European Journal of Operational Research, 98: 175–212.
Bian Y., Yang F. (2010): Resource and environment efficiency analysis of provinces in China: A DEA approach based on Shannon’s entropy. Energy Policy, 38: 1909–1917.
Brockett P.L., Charnes A., Cooper W.W., Huang Z.M., Sun D.B. (1997): Data transformations in DEA cone ratio envelopment approaches for monitoring bank performances. European Journal of Operational Research, 98: 250–268.
Charnes A., Cooper W.W., Lewin A.Y., Seiford L.M. (1994): Data Envelopment Analysis: Theory, Methodology and Application. Dordrecht, The Netherlands, Kluwer Academic Publishers: 513–514.
Charnes A., Cooper W.W., Rhodes E. (1978): Measuring the efficiency of decision making units. European Journal of Operational Research, 2: 429–444.
Cooper W.W., Seiford L.M., Tone K. (2007): Data Envelopment Analysis, a Comprehensive Text with Models, Applications, References and DEA-Solver Software. New York, United States of America, Kluwer Academic Publishers.
EUROSTAT (2018a): Employment by A*10 Industry Breakdowns. Available at (accessed June 6, 2018).
EUROSTAT (2018b): Utilised Agricultural Area by Categories. Available at (accessed June 6, 2018).
EUROSTAT (2018c): National Accounts Aggregates by Industry. Available at (accessed June 6, 2018).
EUROSTAT (2018d): Final Energy Consumption by Sector. Available at (accessed June 6, 2018).
Fukuyama H., Weber W.L. (2001): Efficiency and productivity change of non-life insurance companies in Japan. Pacific Economic Review, 6: 129–146.
Galanopoulos K., Aggelopoulos S., Kamenidou I., Mattas G. (2006): Assessing the effects of managerial and production practices on the efficiency of commercial pig farming. Agriculture Systems, 88.
Hu J.-L., Kao Ch.-H. (2007): Efficient energy-saving targets for APEC economies. Energy Policy, 35: 373–382.
Jacobs R., Smith P.C., Street A. (2006): Measuring Efficiency in Healthcare. Cambridge, Great Britain, Cambridge University Press.
O’Neil L., Dexter F. (2005): Methods for understanding super-efficiency data envelopment analysis. Results with an applications to hospital in patient surgery. Health Care Management Science, 8: 291–298.
Ramanathan R. (2005): Analysis of energy consumption and carbon dioxide emissions in countries of the Middle East and North Africa. Energy, 30: 2831–2842.
Roll Y., Hayuth Y. (1993): Port performance comparison applying data envelopment analysis (DEA). Maritime Policy and Management, 20: 154–156.
Saunders E.S. (2003): Cost efficiency in ARL academic libraries. The Bottom Line: Managing Library Finances, 16: 5–14.
Song M.L., Wang S.H. (2014): DEA decomposition of China’s environmental efficiency based on search algorithm. Applied Mathematics and Computation, 247: 562–572.
Svatoš M. (2005): Global consequences of sustainable development of agriculture. Agricultural Economics – Czech, 51: 20–26.
Toffler A. (1980): The Third Wave. New York, United States of America, William Morrow.
UNDP (2016): Human Development Report 2016. Human Development for Everyone. Available at (accessed Nov 14, 2018).
World Bank (2018): GDP per Capita (Current US$). Available at (accessed Nov 14, 2018).
Zhou P., Poh K.L., Ang B.W. (2007): A non-radial DEA approach to measuring environmental performance. European Journal of Operational Research, 178: 1–9.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti