A spatial equilibrium analysis of using agricultural resources to produce biofuel

https://doi.org/10.17221/201/2019-AGRICECONCitation:Kung C., Wu T. (2020): A spatial equilibrium analysis of using agricultural resources to produce biofuel. Agric. Econ. – Czech, 66: 74-83.
supplementary materialdownload PDF

In order to alleviate the potential damage from climate change and fulfil the requirements contracted in the Paris Agreement (COP 24), China has promulgated the mandatory regulation on ethanol-blend gasoline to reduce current levels of CO2 emissions. Since large-scale bioenergy development involves various aspects such as feedstock selection (energy crops, crop wastes), technology alternatives (conventional and cellulosic ethanol, pyrolysis), government subsidy (land use, energy crop subsidy) and carbon trade mechanism, an analysis that integrates economic, environmental, and social effects is necessary to explore the optimal biofuel strategy and social effects. This study proposes a price endogenous, partial equilibrium mathematical programming model to investigate how the selection of bioenergy crops and bioenergy technologies influences the amount of net bioenergy production, carbon sequestration, government subsidies, and cultivation patterns. We show that the conjunctive use of agricultural wastes can be an effective addition to current biofuel production. The results also indicate that at high gasoline and emissions prices, more land used for the energy crop program results in a significant change in government expenditure. In addition, net emissions reduction and emissions offset efficiency can vary substantially when different bioenergy techniques are adopted.

Annual Statistics of Jiangxi Agriculture (ASJA) (2016): Annual Report of Agricultural Commodities of Jiangxi Province. Nanchang, China, Jiangxi Bureau of Statistics.
Arvizu D. (2008): Biofuels: too soon to give up. Science, 320: 1419–1420. https://doi.org/10.1126/science.320.5882.1419b
Braden J., Bai X. (2018): Production of biofuel precursor chemicals from the mixture of cellulose and polyvinylchloride in polar aprotic solvent. Waste Management, 78: 894–902. https://doi.org/10.1016/j.wasman.2018.07.011
Bridgwater A.V., Peacocke G.V.C. (2000): Fast pyrolysis process for biomass. Renewable and Sustainable Energy Reviews, 4: 1–73. https://doi.org/10.1016/S1364-0321(99)00007-6
Cao X., Kung C.C., Wang Y. (2017): An environmental and economic evaluation of carbon sequestration from pyrolysis and biochar application in China. Agricultural Economics – Czech, 12: 569–578.
Chen C.C., McCarl B.A., Chang C.C., Tso C. (2011): Evaluation the potential economic impacts of Taiwanese biomass energy production. Biomass Bioenergy, 35: 1693–1701. https://doi.org/10.1016/j.biombioe.2011.01.004
Commodity Prices Statistics Monthly (CPSM) (2016): Monthly price statistics of general commondity in Jiangxi. Nanchang, China, Jiangxi Bureau of Statistics.
Couto N.D., Silva V.B., Monteiro E., Rouboa A. (2015): Assessment of municipal solid wastes gasification in a semi-industrial gasifier using syngas quality indices. Energy, 93: 864–873. https://doi.org/10.1016/j.energy.2015.09.064
Daniel G., Ugarte D.T., English B.C., Kim J. (2007): Sixty billion gallons by 2030: economic and agricultural impacts of ethanol and biodiesel expansion. American Journal of Agricultural Economics, 89: 1290–1295. https://doi.org/10.1111/j.1467-8276.2007.01099.x
Doshi P., Srivastava G., Pathak G., Dikshit M. (2014): Physicochemical and thermal characterisation of nonedible oilseed residual waste as sustainable solid biofuel. Waste Management, 34: 1836–1846. https://doi.org/10.1016/j.wasman.2013.12.018
Grashuis J. (2019): Spatial competition in the Iowa corn market: Informing the pricing behavior of corporate and cooperative grain merchants. Sustainability, 11: 1010. https://doi.org/10.3390/su11041010
Hall C.A.S., Dale B.E., Pimentel D. (2011): Seeking to understand the reasons for different energy return on investment (EROI) estimates for biofuels. Sustainability, 3: 2413–2432. https://doi.org/10.3390/su3122413
Karmee S.K. (2013): A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites. Waste Management, 72: 240–254. https://doi.org/10.1016/j.wasman.2017.10.042
Kung C.C., McCarl B.A., Cao X., Xie H. (2013): Bioenergy prospects in Taiwan using set aside land – an economic evaluation. China Agricultural Economic Review, 5: 489–511. https://doi.org/10.1108/CAER-01-2012-0002
Li Y., Tang W., Chen Y., Liu J., Lee C.F. (2019): Potential of acetone-butanol-ethanol (ABE) as a biofuel. Fuel, 242: 673–686.
Liu Z., McNamara P.J., Zitomer D.H. (2017): Autocatalytic pyrolysis of wastewater biosolids for product upgrading. Environmental Science and Technology, 51: 9808–9816. https://doi.org/10.1021/acs.est.7b02913
McCarl B.A., Schneider U.A. (2000): US agriculture’s role in a greenhouse gas emission mitigation world: an economic perspective. Review of Agricultural Economics, 22: 134–159. https://doi.org/10.1111/1058-7195.t01-1-00011
McCarl B.A., Spreen T.H. (1980): Price endogenous mathematical programming as a tool for sector analysis. American Journal of Agricultural Economics, 62: 87–102. https://doi.org/10.2307/1239475
Qambrani N.A., Rahman M.M., Won S., Shim S., Ra C. (2017): Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renewable and Sustainable Energy Reviews, 79: 255–273. https://doi.org/10.1016/j.rser.2017.05.057
Samuelson P.A. (1950): Spatial price equilibrium and linear programming. American Economic Review, 42: 283–303.
Statistics of Agricultural Prices and Costs Monthly of Jiangxi Province (SAPCM) (2015): The Annual Statistics of Prices and Costs for Agricultural Commodities. Nanchang, China, Jiangxi Bureau of Statistics.
Takayama T., Judge G.G. (1971): Spatial and Temporal Price Allocation Models. Amsterdam, North-Holland Publishing Company.
Tso C., Su M. (2009): Domestic bio-ethanol sources productivity and energy and economic indicators research. Taiwan Journal of Agricultural Economics, 30: 47–64.
supplementary materialdownload PDF

© 2020 Czech Academy of Agricultural Sciences