The impact of agriculture and renewable energy on climate change in Central and East European Countries

Florea N.M., Bădîrcea R.M., Pîrvu R.C., Manta A.G., Doran M.D., Jianu E. (2020): The impact of agriculture and renewable energy on climate change in Central and East European Countries. Agric. Econ. – Czech, 66: 443–457.

download PDF

According to the objectives of the European Union concerning the climate changes, Member States should take all the necessary measures in order to reduce the greenhouse gas emissions. The aim of this study is to identify the causality relations between greenhouse gases emissions, added value from agriculture, renewable energy consumption, and economic growth based on a panel consisting of 11 states from the Central and Eastern Europe (CEECs) in the period between 2000 and 2017. The Autoregressive Distributed Lag (ARDL) method was used to estimate the long-term relationships among the variables. Also a Granger causality test based on the ARDL – Error Correction Model (ECM) and a Pairwise Granger causality test were used to identify the causality relationship and to detect the direction of causality among the variables. The results obtained reveal, in the long term, two bidirectional relationships between agriculture and economic growth and two unidirectional relationships from agriculture to greenhouse gas emissions and renewable energy. In the short term, four unidirectional relationships were found from agriculture to all the variables in the model and one unidirectional relationship from renewable energy to greenhouse gas emissions.

Bański J. (2018): Phases to the transformation of agriculture in Central Europe – Selected processes and their results. Agricultural Economics – Czech, 64: 546–553.
Bennetzen E.H., Smith P., Porter J.R. (2016): Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Global Change Biology, 22: 763–781.
Berna A., Vardar G. (2020): Evaluating the role of renewable energy, economic growth and agriculture on CO2 emission in E7 countries. International Journal of Sustainable Energy, 39: 335–348.
Choi I. (2001): Unit roots tests for panel data. Journal of International Money and Finance, 20: 229–72.
Climate Action Network Europe (CANE) (2018): Off target ranking of EU countries’ ambition and progress in fighting climate change. Brussels, Belgium, CANE. Available at: (accessed May 2, 2020).
Czubak W., Sadowski A. (2013): The priorities of rural development in EU countries in years 2007–2013. Agricultural Economics – Czech, 59: 58–73.
Czubak W., Pawłowski K.P. (2020): Sustainable economic development of farms in Central and Eastern European Countries driven by pro-investment mechanisms of the Common Agricultural Policy. Journal Agriculture, 10: 93.
Engle R.F., Granger C.W.J. (1987): Cointegration and error correction: Representation, estimation and testing. Econometrica, 55: 251–76.
European Commission’s Directorate General for Climate Action (DG CLIMA; EC) (2018): A Clean Planet for All a European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy. DG CLIMA. Available at (accessed May 2, 2020).
European Commission’s General Directorate for Agriculture and Rural Developement (DG AGRI; EC) (1998): Agricultural Situation and Prospects in the Central and Eastern European Countries. Summary Report. Luxembourg, Office for Official Publications of the European Communities. Available at (accessed May 2, 2020).
EU (2018): Directive (EU) 2018/2001 of the European Parliament and the Council on the Promotion of the Use of Energy from Renewable Sources. Available at (accessed May 2, 2020).
European Environment Agency (EEA) (2003): Europe`s Environment: The Third Assessment. Luxembourg, Publications Office of the European Union: 21–25.
European Environment Agency (EEA) (2018): Approximated EU GHG Inventory: Proxy GHG Estimates for 2017. EEA Report. Copenhagen, Denmark, European Environment Agency, 17: 2–107.
European Environment Agency (EEA) (2020): European Environment Agency. Available at:
Eurostat (2015): Agriculture – Greenhouse Gas Emission Statistics. [Dataset]. Available at: (accessed May 8, 2020).
Eurostat (2018): Statistical Database. Eurostat. Available at (accessed May 1, 2020).
Eurostat (2019): Renewable Energy Statistics. Eurostat. Available at (accessed May 2, 2020).
Eurostat (2020). National Accounts. Eurostat. Available at:
Fisher R.A. (1932): Statistical Methods for Research Workers. 4th Ed. London, Oliver and Boyd: 66–70.
Food and Agriculture Organization (FAO) (2006): Livestock’s Long Shadow: Environmental Issues and Options. Rome, Italy, Food and Agriculture Organization. Available at (accessed May 2, 2020).
Food and Agriculture Organization of the United Nations (FAO) (2018): Status of Implementation of e-Agriculture in Central and Eastern Europe and Central Asia – Insights from Selected Countries in Europe and Central Asia. Budapest, FAO.
Frank S., Havlík P., Stehfest E., van Meijl H., Witzke P., Pérez-Domínguez I., van Dijk M., Doelman J.C., Fellmann T., Koopman J.F.L., Tabeau A., Valin H. (2019): Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nature Climate Change, 9: 66–72.
Gessesse A.T., He G. (2020): Analysis of carbon dioxide emissions, energy consumption, and economic growth in China. Agricultural Economics – Czech, 66: 183–192.
Hergrenes A., Berknel H., Linem G. (2001): Income instability among farm households – Evidence from Norway farm management. Farm Management 11: 37–48.
Herzog T. (2005): World Greenhouse Gas Emissions in 2005. World Resources Institute, Washington, DC, 20002. Available at (accessed May 3, 2020).
Im K.S., Pesaran M.H., Shin Y. (2003): Testing for unit roots in heterogeneous panels. Journal of Econometrics, 115: 53–74.
IPCC (2018): Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. IPPC. Available at (accessed May 3, 2020).
Jebli M., Ben Y., Ben S. (2016): Renewable energy consumption and agriculture: Evidence for cointegration and Granger causality for Tunisian economy. International Journal of Sustainable Development and World Ecology, 4509: 1–10.
Jebli M., Ben Y., Ben S. (2017): The role of renewable energy and agriculture in reducing CO2 emissions: Evidence for North Africa Countries. Ecological Indicators, 74: 295–301.
Kantor C., Mclean E., Kantor M. (2017) Climate change influence on agriculture and the water-energy-food nexus in Central and Eastern European Countries. Review Notulae Scientia Biologicae, 9: 449–459.
Levin A., Lin C.F., Chu C.S.J. (2002): Unit root tests in panel data: Asymptotic and finite-sample properties. Journal of Econometrics, 108: 1–24.
Liu X., Zhang L., Bae J. (2017): The impact of renewable energy and agriculture on carbon dioxide emissions: Investigating the environmental Kuznets curve in four selected ASEAN countries. Journal of Cleaner Production, 164: 1239–1247.
Maddala G.S., Wu S.A. (1999): Comparative study of unit root tests with panel data and a new simple test. Oxford Bulletin of Economics and Statistics, Special Issue: 631–652.
Paustian K., Cole C.V., Sauerbeck D., Sampson N. (1998): CO2 mitigation by agriculture: An overview. Climate Change, 40: 135–162.
Pedroni P. (1999): Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxford Bulletin of Economics and Statistics, 61: 653–670.
Pedroni P. (2004): Panel cointegration: asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis. Journal of Economic Theory, 20: 597–625.
Pesaran M.H., Shin Y., Smith R.P. (1999): Pooled mean group estimation of dynamic heterogeneous panels. Journal of the American Statistical Association, 94: 621–634.
Petrick M., Weingarten P. (2004): The role of agriculture in Central and Eastern European rural development: Engine of change or social buffer? In: Institute of Agricultural Development in Central and Eastern Europe (eds.): Studies on the Agricultural and Food Sector in Central and Eastern Europe, 25. Halle, Institute of Agricultural Development in Central and Eastern Europe: 1–20.
Runowski H. (2017): The problem of assessing the level of agricultural income in European Union. Annals of the Polish Association of Agricultural and Agribusiness Economists, 19: 185–190.
Safwan M., Karam A., István T., Endre H. (2019): Contemporary changes of greenhouse gases emission from the agricultural sector in the EU-27. Geology, Ecology, and Landscapes, 3: 29–36.
Saidi K., Hammami S. (2015): The impact of CO2 emissions and economic growth on energy consumption in 58 countries. Energy Reports, 1: 62–70.
Sek S.K., Chu J.F. (2017): Investigating economic growth-energy consumption-environmental degradation nexus in China. International Journal of Advanced and Applied Sciences, 4: 21–25.
Simionescu M., Bilan Y., Gędek S., Streimikien D. (2019): The effects of greenhouse gas emissions on cereal production in the European Union. Sustainability, 11: 3433.
Sterpu M., Soava G., Mehedintu A. (2018): Impact of economic growth and energy consumption on greenhouse gas emissions: Testing environmental curves hypotheses on EU countries. Sustainability, 10: 3327.
The World Bank (2020). World Development Indicators. The World Bank. Available at:
Tubiello F.N., Salvatore M., Rossi S., Ferrara A., Fitton N., Smith P. (2013): The FAOSTAT database of greenhouse gas emissions from agriculture. Environmental Research Letters, 8: 015009.
Van Doorslaer B., Fellmann T., Witzke P., Huck I., Weiss F., Salputra G., Jansson T., Drabik D., Leip A. (2015): An Economic Assessment of GHG Mitigation Policy Options for EU Agriculture. Luxembourg, Publications Office of the European Union: 13–15.
Waheed R., Sarwar S., Wei C. (2019): The survey of economic growth, energy consumption and carbon emission. Energy Reports, 5: 1103–1115.
Wollenberg E., Richards M., Smith P., Havlík P., Obersteiner M., Tubiello F.N., Herold M., Gerber P., Carter S., Reisinger A., Sommer W.R., Amonette J., Falcucci A., Herrero M., Opio C., Roman-Cuesta R.M., Stehfest E., Westhoek H., Ortiz-Monasterio I., Sapkota T., Rufino M., Thornton P., Verchot L., West P.C., Soussana J.F., Baedeker T., Sadler M., Vermeulen S., Campbell B.M. (2016): Reducing emissions from agriculture to meet the 2 C target. Global Change Biology, 22: 3859–3864.
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti