Spatial differentiation of particulates emission resulting from agricultural production in Poland

https://doi.org/10.17221/337/2018-AGRICECONCitation:Roman M., Roman M., Roman K.K. (2019): Spatial differentiation of particulates emission resulting from agricultural production in Poland. Agric. Econ. – Czech, 65: 375-384.
download PDF

The article presents the spatial differentiation of particulates emission resulting from agricultural production in Poland. Some indicators of emission have been verified and adjusted to the Polish conditions. The paper estimates PM2.5 (particulate matter, aerodynamic diameter less than 2.5 µm) and PM10 (particulate matter, aerodynamic diameter less than 10 µm) emission resulting from agricultural production and agricultural soil. The findings of the research conducted by the Institute of Ecology of Industrial Areas in Katowice in cooperation with the Institute for Chemical Processing of Coal in Zabrze were the main source of those alterations. Data concerning particular sources of emission also come from the information provided by the Central Statistical Office in Warsaw, the Bank of Local Data 2017. The estimation of PM2.5 and PM10 emission was conducted based on the structure of sources of emission resulting from agriculture contained in “EMEP/EEA Emission Inventory Guidebook” in accordance with the Tier 2 method.

References:
Arslan S., Aybek A. (2012): Particulate matter exposure in agriculture. In: Haryanto B. (ed.): Air Pollution – A Comprehensive Perspective. IntechOpen. Available at https://www.intechopen.com/books/air-pollution-a-comprehensive-perspective/particulate-matter-exposure-in-agriculture
 
Batel W. (1976): Staubemission, Staubimmission und Staubbekämpfung beim Mähdrescher. Grundl, LandtechnikBd, 26: 205–248.
 
BDL (2018): Statistics Poland – BDL. Available at https://bdl.stat.gov.pl/BDL/dane/podgrup/teryt (accessed Jan 13, 2018).
 
CEIP (2015): Officially reported emission data. The Convention on Long-range Transboundary Air Pollution Centre on Emission Inventories and Projections. CEIP. Available at http://www.ceip.at/ms/ceip_home1/ceip_home/webdab_emepdatabase/reported_emissiondata/ (accessed Sept 1, 2016).
 
Cetin M., Sevik H., Isinkaralar K. (2017): Changes in the particulate matter and CO2 concentrations based on the time and weather conditions: the case of Kastamonu. Oxidation Communications, 40: 477–485.
 
Directive 2008/50/EC (2008): Directive of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Official Journal of the European Union, L152: 1–44.
 
European Commission (2013): Directive of the European Parliament and of the Council on the Reduction of National Emissions of Certain Atmospheric Pollution and the Amendment of Directive 2003/35 / EC, Bruksela 18.12.2013 r. COM (2013), 920 final. ANNEXES, 1–6: 11.
 
EMEP/EEA (2016): Air Pollutant Emission Inventory Guidebook. European Environment Agency, Louxemburg.
 
Hinz T. (2002): PM in and from agriculture – introduction and overview. In: Hinz T., Rönnpagel B., Linke S. (eds): Particulate Matter in and from Agriculture. Special Issue 235, Landbauforschung Völkenrode: 1–6.
 
Hutchings N., Webb J., Amon B. (2016): EMEP/EEA Emission Inventory Guidebook 2013. 3.D Crop Production and Agricultural Soils: 1–41. Available at https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/4-agriculture/3-d-crop-production-and/view (accessed Jan 13, 2018).
 
KOBIZE (2017): Poland’s Informative Inventory Report 2017. Submission under the UN ECE Convention on Long-range Transboundary Air Pollution and the Directive (EU) 2016/2284. Warsaw: 1–51.
 
RAINS (2018): Regional Air Pollution Information and Simulation. RAINS.
 
Kamil Krzysztof Roman, Anita Konieczna (2015): Evaluation of a different fertilisation in technology of corn for silage, sugar beet and meadow grasses production and their impact on the environment in Poland. African Journal of Agricultural Research, 10, 1351-1358.  https://doi.org/10.5897/AJAR2015.9574
 
Roman M., Roman M., Roman K. (2018): The forecast of economic processes of selected agricultural products in the development of bioenergy and agritourism activity in Poland. In: Jedlička P., Marešová P., Soukal I. (eds): Double-Blind Peer-Reviewed Proceedings Part II of the International Scientific Conference Hradec Economic Days. University of Hradec Kralove, Hradec Kralove, Jan 30–31, 2018: 247–248.
 
Sakirkin S.L.P., Maghirang R., Amosson S., Auvermann B.W. (2012): Air, dust emissions from cattle feeding operations. Part 1 of 2: Sources, factors, and characteristics. Dust Emissions, Education in Animal Agriculture, January 2012: 1–12.
 
Van Der Hoek K., Hinz T. (2007): Particulate matter emissions from arable production – a guide for UNECE emission inventories’. Landbauforschung Völkenrode, 308: 15–19.
 
Wathes C.M., Phillips V.R., Sneath R.W., Brush S., ApSimon H.M. (2002): Atmospheric emissions of particulates (PM10) from agriculture in the United Kingdom. ASAE Annual Meeting, Paper number 024217. American Society of Agricultural and Biological Engineers. Available at http://elibrary.asabe.org/abstract.asp?aid=10582&redir=[confid=cil2002]&redirType=techpapers.asp&dabs=Y (accessed Sept 26, 2016).
 
WIOS (2018): Powietrze. WIOS. Available at http://www.wios.lodz.pl/files/docs/r15xiiixpowietrze.pdf (accessed Jan 20, 2018).
 
WRAP (2006): Countess environmental, fugitive dust handbook, prepared for the Western Governors’ Association. Countess Environmental, Westlake Village, CA: 1–10.
 
download PDF

© 2019 Czech Academy of Agricultural Sciences